Connect with us

Technologies

Samsung’s QD-OLED TV might be here very soon. Here’s everything we know

Samsung’s rumored OLED TV with quantum dots could be coming as soon as 2022, and the new technology is set to challenge the best from rival LG.

Most people have two options when it comes to TV technology: LCD and OLED. Sure, some people also have the choice of a MicroLED TV, but those can be pricey. Samsung, the biggest TV-maker in the world, has been planted in the LCD camp for many years, while its rival LG is the biggest name in OLED. Despite advancements like QLED, mini-LED and dual panels, LCD has always lagged behind OLED in overall picture quality.

Now Samsung is working on a new kind of TV that aims to combine two display technologies into something greater. It’s a hybrid between OLED and quantum dots called QD Display. Samsung Display will end production of LCD panels by the end of 2021, moving to QD Display next year, according to a February report from Korea IT News. At the same time, Samsung Electronics could start selling these new TVs as early as 2022.

Read more: When is the best time to buy a new TV? Is it Black Friday?

Here’s what we’ve heard about Samsung’s new display technology so far. If you’re looking to spruce up your current TV in the meantime, check out how to get rid of your TV’s muffled dialogue, nine picture settings you should change and the best picture mode for your TV. And believe it or not, your TV’s sharpness controls should be turned down, not up.

Samsung’s $11 billion bet on quantum dots

Samsung has been selling LCD TVs enhanced by quantum dots for the last few years under its QLED brand, but its last (and only) OLED TV was a one-off that it stopped selling almost a decade ago. In October 2019, Samsung Display announced it was building a factory to make TVs that combined these technologies:

Samsung Display will invest 13.1 trillion won by 2025 to build «Q1 Line,» the world’s first QD display mass production line at Asan Campus. The new line is scheduled to start production in 2021 with an initial 30,000 sheets (8.5 generations) and will produce a huge QD display of 65 inches or larger.

That’s an investment of around $11.1 billion. While the company calls this «QD display,» it isn’t electroluminescent, aka «direct view» quantum dots. That technology is still several years away. This is going to be a QD-OLED hybrid.

At the announcement, South Korean President Moon Jae-in also referenced Samsung’s rival LG in regards to Korea’s place in world TV production: «It is important to maintain the top spot of the global display market with game-changing technologies,» Moon said. «Following LG Display’s 3 trillion-won investment in large OLED panel production in July, Samsung Display’s latest investment plan brightens prospects further.»

One thing you might have noticed is that Samsung is calling this «QD display,» which can be confusing since this isn’t direct-view quantum dots (more on these later). Since LG has spent years being the only name in town (figuratively and literally) for OLED, it’s unlikely Samsung will call any version of this technology OLED. We’ll probably have to wait until CES 2022 to find out how it brands the new TV.

What is QD-OLED and how will it work?

So how will it work? Nanosys, a company that makes quantum dots, has shared some details. Its CEO, Jason Hartlove, is understandably bullish on the technology, which relies on converting light from an OLED panel:

«Quantum Dot Color Conversion is a completely new way of rendering color in displays,» he told CNET. «The result is pure quantum dot color with much higher efficiency as no light is lost in a color filter.»

Combining quantum dots and OLED plays to the strengths of both technologies. The idea with any TV is to create red, green and blue light. LED LCDs with quantum dots, like Samsung’s current QLED TVs, use blue LEDs and a layer of quantum dots to convert some of that blue into red and green. With the current version of OLED, yellow and blue OLED materials create «white» light. In both cases, color filters let pass only what color is needed for that specific subpixel.

The idea with a QD-OLED is to simplify these designs into one, by using OLED to create blue light, and then a quantum dot layer to convert some of the blue into red and green.

Read more: How quantum dots could challenge OLED for best TV picture

There are many advantages to this method, in theory. By using only one color or material of OLED, the manufacturing costs go way down since it’s easier to build. LG, for instance, uses only two OLED materials, blue and yellow, for every pixel across the entire display. Light-blockingcolor filters create the green and red. QDs have nearly 100% efficiency, significantly better than filters, so in theory the hybrid TVs will be much brighter. Plus, there’s the possibility of even wider color gamuts at all brightness levels.

Because each pixel can be shut off, these hybrid TVs will also have the incredible contrast ratios that OLED is known for.

Since blue OLED materials still age faster than red and green, having the entire panel one color means the TV ages more evenly with no color shift. Keeping that aging to a minimum, and thereby having a TV that doesn’t seem dim after a few years, is one of the key manufacturing issues. This is especially true in this HDR era of extreme brightness levels.

While this new Samsung plant is focusing on TV-size displays, the technology could work in phone-sized displays as well. Since Samsung doesn’t seem to have any issue making excellent small OLEDs, I’d be surprised if it’s in any rush to upset that market with something as advanced as this. Also, Samsung’s phone-sized OLEDs use red, green and blue OLEDs compared to LG’s blue-yellow. Samsung tried to make RGB OLED TVs and just couldn’t make them profitable. What’s more likely, and mentioned in the latest rumors, is they’ll use this tech to build ultra-high resolution 8K computer monitors along with larger TV screens.

As mentioned earlier, it’s clear Samsung believes strongly in this technology, since it’s ending production of LCDs at its factories in Korea. This doesn’t mean that starting next year it won’t sell any LCDs. Samsung is a massive company, and the part of the company that makes LCDs, Samsung Display, is stopping production. The part of the company that sells TVs, Samsung Electronics, has made no such announcement. In fact, part of the most recent delay was Samsung Electronics needing LCD panels before they were ready to start selling QD-OLED panels. They’ve worked that out for 2021, and most likely going forward they’ll source their LCD panels from a third party.

Into the future: Direct-view quantum dots, ELQD and more

QD-OLED seems to be right around the corner. But what about even farther-future display tech? Well, the quantum dot folks seem to think direct-view quantum dot displays are just a few years off. These electroluminescent quantum dots, or ELQD, would have all the benefits of OLED, all the benefits of QD and none of the issues of LCD or the wear and longevity concerns of OLED. A very promising tech indeed.

The other new TV tech that’s already arriving on the market, the extreme high-end of the market anyway, is MicroLED. It has many of the same benefits as the QD-OLED hybrid, but doesn’t muck around with those pesky organics. Affordable versions of that are still some distance off. Oh, and MicroLEDs use quantum dots too. They’re a fascinating technology with uses far beyond TV screens.

In the meantime, we’ve got mini-LED, which is pretty cool too and far less expensive than any of these.


As well as covering TV and other display tech, Geoff does photo tours of cool museums and locations around the world, including nuclear submarines, massive aircraft carriers, medieval castles, airplane graveyards and more.

You can follow his exploits on Instagram and YouTube, and on his travel blog, BaldNomad. He also wrote a bestselling sci-fi novel about city-sized submarines, along with a sequel.

Technologies

iOS 17 Cheat Sheet: Your Questions on the iPhone Update Answered

Here’s what you need to know about new features and upcoming updates for your iPhone.

Apple’s iOS 17 was released in September, shortly after the company held its Wonderlust event, where the tech giant announced the new iPhone 15 lineup, the Apple Watch Series 9 and the Apple Watch Ultra 2. We put together this cheat sheet to help you learn about and use the new features in iOS 17. It’ll also help you keep track of the subsequent iOS 17 updates.

iOS 17 updates

Using iOS 17

Getting started with iOS 17

Make sure to check back periodically for more iOS 17 tips and how to use new features as Apple releases more updates.

17 Hidden iOS 17 Features You Should Definitely Know About

See all photos

Continue Reading

Technologies

Get Ready for a Striking Aurora That Could Also Disrupt Radio Communications

Don’t expect the storm to cause a lingering problem, though.

A geomagnetic storm is threatening radio communications Monday night, but that doesn’t mean you should be concerned. In fact, it may be an opportunity to see a colorful aurora in the night sky.

The National Oceanic and Atmospheric Administration has issued a geomagnetic storm watch after witnessing a coronal mass ejection from the sun on Saturday. The watch, which was issued over the weekend and will expire after Monday, said the onset of the storm passing over Earth on Sunday night represented a «moderate» threat to communications. As the storm continues to pass through, it could deliver a «strong» threat on Monday night that could cause radio communications to be temporarily disrupted during the worst of it.

Even so, NOAA said, «the general public should not be concerned.»

A coronal mass ejection occurs when magnetic field and plasma mass are violently expelled from the sun’s corona, or the outermost portion of the sun’s atmosphere. In the vast majority of cases, the ejection occurs with no real threat to Earth. However, in the event the ejection happens in the planet’s direction, a geomagnetic storm occurs, and the Earth’s magnetic field is temporarily affected.

In most cases, geomagnetic storms cause little to no disruption on Earth, with radio communications and satellites affected most often. In extreme cases, a geomagnetic storm can cause significant and potentially life-threatening power outages — a prospect that, luckily, the planet hasn’t faced.

Switching poles

Every 11 years, the sun’s magnetic poles switch, with the north pole and south pole swapping positions. During those cycles, the sun’s activity ramps up as it gets closer to pole-switching time. The height of its activity is called solar maximum, and scientists believe we either may be entering the solar maximum or may be already in it.

During periods of heightened solar activity, sunspots increase on the sun and there’s an increase in coronal mass ejections, among other phenomena. According to NOAA, solar maximum could extend into October of this year before the sun’s activity calms and it works towards its less-active phase, solar minimum.

Even when geomagnetic storms hit Earth and disrupt communications, the effects are usually short-lived. Those most affected, including power grid operators and pilots and air traffic controllers communicating over long distances, have fail-safe technologies and backup communications to ensure operational continuity.

But geomagnetic storms aren’t only about radios. In most cases, they also present unique opportunities to see auroras in the night sky. When the storms hit, the plasma they carry creates a jaw-dropping aurora, illuminating the night sky with brilliant colors. Those auroras can be especially pronounced during the most intense phases of the storm, making for nice stargazing.

If you’re interested in seeing the aurora, you’ll need to be ready. The NOAA said the «brunt of the storm has passed» and even if it lingers into Tuesday, there won’t be much to see after Monday night. 

Continue Reading

Technologies

Last Total Solar Eclipse for 20 Years Is Coming: How to See and Photograph It

It’s your last chance until 2044.

Get your eclipse glasses ready, Skygazers: the Great American Eclipse is on its way. On April 8, there’ll be a total eclipse over North America, the last one until 2044.

A total solar eclipse happens when the moon passes between the Earth and the sun, blocking the sun and turning an otherwise sunny day to darkness for a short period of time. Depending on the angle at which you’re viewing the eclipse, you may see the sun completely shrouded by the moon (called totality) or some variation of it. The more off-angle you are and the further you are from the path of the eclipse, the less likely you’ll be to see the totality.

The 2024 total solar eclipse will happen on Monday, April 8. The Great American Eclipse will reach the Mexican Pacific coast at 11:07 a.m. PT (2:07 p.m. ET), and then traverse the US in a northeasterly direction from Texas to Maine, and on into easternmost Canada. If you want a good look at it, but don’t live in the path of totality, you shouldn’t wait much longer to book accommodation and travel to a spot on the path.

Or how about booking a seat in the sky? Delta Airlines made headlines for offering a flight that allows you to see the entire path of totality. Its first eclipse flight, from Austin, Texas, to Detroit sold out quickly. But as of Monday, Delta has added a second flight from Dallas to Detroit, which also covers the path of totality. The airline also has five flights that will offer prime eclipse viewing.

Not everyone can get on one of those elusive eclipse-viewing flights. Here’s a look at other options to nab a chance to see this rare sight and what to know about it.

Total solar eclipse path

The eclipse will cross over the Pacific coast of Mexico and head northeast over mainland Mexico. The eclipse will then make its way over San Antonio at approximately 2:30 p.m. ET on April 8 and move through Texas, over the southeastern part of Oklahoma and northern Arkansas by 2:50 p.m. ET.

By 3 p.m. ET, the eclipse will be over southern Illinois, and just 5 minutes later, will be traveling over Indianapolis. Folks in northwestern Ohio will be treated to the eclipse by 3:15 p.m. ET, and it will then travel over Lake Erie and Buffalo, New York, by 3:20 p.m. ET. Over the next 10 minutes, the eclipse will be seen over northern New York state, then over Vermont. By 3:35 p.m. ET, the eclipse will work its way into Canada and off the Eastern coast of North America.

Best places to watch the Great American Eclipse

When evaluating the best places to watch this year’s total eclipse, you’ll first want to determine where you’ll have the best angle to see the totality. The farther off-angle you are — in other words, the farther north or south of the eclipse’s path — the less of an impact you can expect.

Therefore, if you want to have the best chance of experiencing the eclipse, you’ll want to be in its path. As of this writing, most of the cities in the eclipse’s path have some hotel availability, but recent reports have suggested that rooms are booking up. And as more rooms are booked, prices are going up.

So if you want to be in the eclipse’s path, and need a hotel to do it, move fast. And Delta’s eclipse-viewing flight from Dallas to Detroit has just four seats left at the time of publication.

Eclipse eye safety and photography

 
As with any solar eclipse, it’s critical you keep eye safety in mind.

During the eclipse, and especially during the periods before and after totality, don’t look directly at the sun without special eye protection. Also, be sure not to look at the sun through a camera (including the camera on your phone), binoculars, a telescope or any other viewing device. This could cause serious eye injury. Sunglasses aren’t enough to protect your eyes from damage.

If you want to view the eclipse, you’ll instead need solar viewing glasses that comply with the ISO 12312-2 safety standard. Anything that doesn’t meet that standard or greater won’t be dark enough to protect your eyes. Want to get them for free? If you’ve got a Warby Parker eyeglasses store nearby, the company is giving away free, ISO-certified solar eclipse glasses at all of its stores from April 1 until the eclipse, while supplies last.

If you don’t have eclipse viewing glasses handy, you can instead use indirect methods for viewing the eclipse, like a pinhole projector.

Read more: A Photographer’s Adventure With the Eclipse

In the event you want to take pictures of the eclipse, attach a certified solar filter to your camera. Doing so will protect your eyes and allow you to take photos while you view the eclipse through your lens.

There’s also a new app to help you both protect your eyes and take better photos of the eclipse on your phone. Solar Snap, designed by a former Hubble Space Telescope astronomer, comes with a Solar Snap camera filter that attaches to the back of an iPhone or Android phone, along with solar eclipse glasses for protecting your eyesight during the event. After you attach the filter to your phone, you can use the free Solar Snap Eclipse app to zoom in on the eclipse, adjust exposure and other camera settings, and ultimately take better shots of the eclipse.

2024 eclipse compared to 2017

The last total solar eclipse occurred in 2017, and many Americans had a great view. Although there are plenty of similarities between the 2017 total solar eclipse and the one coming April 8, there are a handful of differences. Mainly, the 2024 eclipse is going to cover more land and last longer.

The 2017 eclipse started over the northwest US and moved southeast. Additionally, that eclipse’s path was up to 71 miles wide, compared with a maximum width of 122 miles for this year’s eclipse. Perhaps most importantly, the moon completely covered the sun for just 2 minutes, 40 seconds in 2017. This year, maximum totality will last for nearly four-and-a-half minutes.

Continue Reading

Trending

Exit mobile version