Connect with us

Technologies

What a Fusion Energy Breakthrough Means for Green Power

Four times now, researchers have produced a fleeting burst of fusion energy, an encouraging sign for making this zero-carbon energy source a reality.

Scientists at Lawrence Livermore National Laboratory who achieved a major fusion milestone a year ago have repeated it three times more. Each experiment used 192 lasers to ignite a fusion reaction that for a fleeting moment produced more energy than was used to trigger it.

Fusion powers the sun, and humans reproduced the process more than 70 years ago to power thermonuclear weapons. The scientific and engineering challenges of a controlled fusion reaction, though, are formidable. The repeated successes by the scientists at LLNL’s National Ignition Facility, gradually increasing the laser power that causes a tiny fusion fuel pellet to implode, are important steps of progress toward sustained, controlled fusion.

«Higher laser energy can help achieve a more stable implosion, resulting in higher yields,» said Jean-Michel Di Nicola, a NIF leader, in a statement after the fourth fusion success on Oct. 30.

But what do the experiments mean for science and for the dream of a new energy source that would power our homes and cars without releasing any carbon dioxide?

In short, it’s fine to applaud the NIF achievements, but they don’t mean a green energy revolution is imminent. It’ll still be years before fusion power progress bears fruit — likely a decade or so — and it’s still not clear if fusion will ever be cheap enough to radically transform our power grid. Continuing today’s investments in solar and wind is critical to combating climate change.

Commercial fusion ventures applauded the NIF experiment and have made gradual progress since then. Commonwealth Fusion Systems opened a new headquarters in Devens, Massachusetts, where it’s building an experimental reactor designed to produce power. Tokamak Energy and General Fusion announced new facilities to be built near Oxford in the UK. Microsoft has agreed to buy fusion power from a Helion Energy plant called Constellation scheduled to go online in 2028. Other startups like Zap Energy and TAE Technologies are touting progress, too.

Here’s a look at what’s happened and what’s still to come.

What is fusion?

An illustration of laser light producing X-rays to initiate a fusion reaction at the National Ignition Facility

Fusion occurs when two lighter elements like hydrogen or helium merge into a single, heavier element. This nuclear reaction releases a lot of energy, as exhibited by the biggest fusion furnace around, the sun.

It’s harder to get fusion to occur on Earth, though, because atomic nuclei are positively charged and therefore repel each other. The sun’s enormous mass produces tremendous pressure that overcomes that repulsion, but on Earth, other forces are required.

Two general approaches to squeeze atoms together and produce fusion are called inertial and magnetic confinement. Inertial confinement usually uses lasers to zap a pellet with a lot of power, triggering an explosion that compresses the fusion fuel. That’s the method NIF uses.

The other approach uses magnetic fields. It’s more widespread among companies trying to commercialize fusion energy.

What did the experiment at NIF accomplish?

In December 2022, a NIF experiment crossed a critical threshold for fusion where the energy that the fusion reaction generated — 3.15 million joules — exceeded the 2.05 megajoules from the lasers to trigger the reaction. Because much more energy is required to run the lasers, though, the reaction overall is highly inefficient.

Fusion researchers denote the ratio of output energy to input energy with the letter Q, and the December 2022 reaction was the first time a fusion reaction surpassed Q = 1. On July 20, Oct. 8 and Oct. 30 of this year, NIF repeated its success in which Q was greater than 1. The Oct. 30 experiment used a record amount of laser power, 2.2 megajoules, an improvement that’s difficult since the lasers can destroy the optical equipment that guide their light.

«It’s all about the control of the damage,» said NIF operations leader Bruno Van Wonterghem in a statement. «Too much energy without proper protection, and your optics blow to pieces.»

Fusion reactors will have to reach a threshold of Q = 10 before energy generation is practical. That’s what everybody is aiming for, including another massive government-funded project called ITER in France. And fusion reactors will have to reach Q = 10 much more frequently than NIF can.

In some ways, these are academic milestones, which fusion experiments have nudged toward for decades. But given fusion’s reputation for not ever getting there, it’s an important proof of what’s possible. Think a little bit more carefully before you repeat that oft-quoted snarky remark that fusion is the energy source of the future and always will be.

What does the NIF experiment mean for green power?

Not a huge amount, for a few reasons. For one thing, most commercial fusion energy projects are using various forms of magnetic confinement, not NIF’s laser-based approach, so the engineering challenges are different. For another, NIF is a gargantuan, $3.5 billion national lab project funded to research nuclear weapons, not a project designed to produce reliable energy for the grid at the most competitive cost.

«Don’t expect future fusion plants to look anything like NIF,» said Princeton researcher Wilson Ricks in a post on X, formerly Twitter. Huge inefficiencies in NIF’s lasers and in the conversion of fusion heat to electrical power mean its design is inherently impractical. In comparison, «magnetic confinement fusion holds some real promise,» Ricks tweeted.

Lowering fusion’s cost is critical to its success since it’ll have to compete against zero-carbon alternatives like today’s fission-based nuclear reactors that can generate a steady supply of power and renewables like wind and solar that are cheaper but intermittent.

«Fusion’s first competitor is fission,» researchers at the Princeton Plasma Physics Laboratory concluded in an October research paper, not yet peer reviewed, that assesses fusion’s prospects on the electrical grid. They expect that if fusion’s high costs can come down enough, it could replace the need for future fission plants, and if lowered further, could also compete against the combination of solar and energy storage.

NIF is a big, complicated site. If fusion power plants can be built in cheaper, smaller units that are more like something coming off a factory line, production costs should decrease. That’s thanks to a phenomenon called Wright’s Law, the experience curve or the learning curve, which has steadily lowered costs for solar and wind. The bigger and more customized a fusion plant is, the less costs will drop and the less competitive fusion will be.

Are there some less direct benefits from NIF’s results?

Yes. Scientists could benefit somewhat from the NIF experiment by updating fusion physics models to account for the fact that it’s supplying its own heat instead of relying on external sources, said Andrew Holland, chief executive of the Fusion Industry Association, an advocacy group for the industry.

And the attention could help, too, especially given longrunning skepticism about fusion energy. 

TAE Technologies CEO Michl Binderbauer called NIF’s result «a huge stepping stone into the dawn of the fusion age,» and said it’s an important illustration that fusion energy really is plausible.

Investors have noticed, too. Downloads of the Fusion Industry Association’s annual report, which details the $4.8 billion in venture capital investments in fusion energy startups, increased tenfold after the first NIF achievement was announced, Holland said. Many of those requesting it are from investment firms, he added.

How does fusion work at NIF?

NIF triggers fusion using 192 powerful infrared lasers with a combined energy level of 4 megajoules — about the same as a two-ton truck traveling at 100 mph. That’s converted first into 2 megajoules of ultraviolet light, then into X-rays that strike a peppercorn-sized pellet of fusion fuel.

The intense X-rays cause the outer layer of the pellet to blow off explosively, compressing the pellet interior and triggering fusion. The heat from that fusion sustains the reaction until it runs out of fuel or becomes lopsided and falters.

An aerial photo of the National Ignition Facility shows that it's the size of three football fields

Nuclei? Hydrogen? Catch me up on atomic physics, please

Sure! Here’s a quick refresher.

Everything on Earth is made of tiny atoms, each consisting of a central nucleus and a cloud of negatively charged electrons. The nucleus is made of neutrons and positively charged protons. The more protons in the nucleus, the heavier the element is.

Hydrogen usually has one proton and one electron. An unusual variety called deuterium has a neutron, too, and using nuclear reactors or fusion reactors, you can make a third variety called tritium with two neutrons.

Chemical reactions, like iron rusting or wood burning, occur when those positive and electrical charges cause atoms to interact. In comparison, nuclear reactions occur when the nuclei of atoms split apart or join together. Here on Earth, it’s harder to marshal the required forces to get nuclear reactions to take place, which is why it’s easier to make a steam engine than a nuclear bomb.

When you heat atoms up enough, they get so energetic that the electrons are stripped loose. The resulting cloud of negatively charged electrons and positively charged nuclei is called a plasma, a more exotic state of matter than the solids, liquids and gases that we’re used to at room temperature here on Earth.

The sun is made of plasma, and fusion reactors need it, too, to get those hydrogen nuclei to bounce around energetically enough. A convenient property of plasmas is that their electrically charged particles can be manipulated with magnetic fields. That’s crucial to many fusion reactor designs.

What do you use for fusion fuel?

NIF and most other fusion projects use the two heavy versions of hydrogen, deuterium and tritium, called DT fuel. But there are other options, including hydrogen-boron and deuterium-helium-3, a form of helium with only one neutron instead of the more common two.

To get deuterium and tritium to fuse, you need to heat a plasma up to a whopping temperature of about 100 million degrees Celsius (180 million degrees Fahrenheit). Other reactions are even higher, for example about a billion degrees for hydrogen-boron fusion.

Deuterium can be filtered out of ordinary water, but tritium, which decays away radioactively over a few years, is harder to come by. It can be manufactured in nuclear reactors and, in principle, in future fusion reactors, too. Managing tritium is complex, though, because it’s used to boost nuclear weapon explosions and thus is carefully controlled.

How do you turn that fusion reaction into power?

The deuterium-tritium fusion reaction produces fast-moving solo neutrons. Their kinetic energy can be captured in a «blanket» of liquid that surrounds the fusion reactor chamber and heats up as the neutrons collide.

That heat is then transferred to water that boils and powers conventional steam turbines. That technology is well understood, but nobody has yet connected it to a fusion reactor. Indeed the first generation of fusion power reactors being built today are designed to exceed Q=1, but not to capture power. That’ll wait for the pilot plants that are expected to arrive in the next wave of development.

Is fusion work funded by the government or the private sector?

Both. NIF is funded by the US government’s nuclear weapons program. Government funding also pays for the Joint European Torus in the UK and ITER in France, both of which are more closely aligned with the goal of fusion energy generation.

But increasingly fusion energy is privately funded. Investors have poured $4.8 billion total into fusion energy startups, of which $2.8 billion arrived in the last year, according to the Fusion Industry Association’s annual report published earlier in 2022. Most of that went to Commonwealth Fusion Systems, a startup that spun out of MIT and raised more than $1.8 billion in a funding round in 2021.

The government is now helping the private sector, too. The US Energy Department in September 2022 announced a Milestone Program that provides up to $50 million to build fusion energy pilot plants. The Biden administration, a fusion proponent, said in November 2022 that fusion energy is one of five key approaches to halve carbon emissions by 2030 and reach net zero emissions by 2050.

«Uncle Sam is getting serious,» said Holland of the Fusion Industry Association. NIF’s achievement is «a pass-the-torch moment, where it goes from science and national labs to the commercial sector.»

How is fusion different from fission?

Fission, which powers today’s nuclear reactors, is the opposite of fusion. In fission, heavy elements like uranium split apart into lighter elements, releasing energy in the process.

Humans have been able to achieve fusion for decades with thermonuclear weapons. These designs slam material like uranium or plutonium together to trigger a fission explosion, and that provides the tremendous energy needed to initiate the secondary and more powerful fusion reaction.

In bombs, the process occurs in a fraction of a second, but for energy production, fusion must be controlled and sustained.

Do fusion reactors create radioactive waste?

Yes, generally, but it’s not nearly as troublesome as with fission reactors. For one thing, most of the radioactive emissions are short-lived alpha particles — helium nuclei with a pair of protons and a pair of neutrons — that are easily blocked. The fast-moving neutrons can collide with other materials and create other radioactive materials.

Fusion reactors’ neutron output generally will degrade components, requiring periodic replacement that could require downtime lasting perhaps a few months every few years. It’s vastly easier to handle than the high-level nuclear waste of fission power plants, though.

Hydrogen-boron fusion is harder to achieve than deuterium-tritium fusion, but part of its appeal is that it doesn’t produce any neutrons and attendant radioactive materials. The most prominent company pursuing this approach is TAE Technologies.

What are the safety risks of fusion power?

Fusion power plants don’t have the meltdown risks that have caused problems with fission reactors like the Fukushima and Chernobyl sites. When a fusion reaction goes awry, it just fizzles out.

But there still are significant operational issues that you’ll see at major industrial sites, including a lot of electrical power and high-pressure steam. In other words, the big problems are more like those you’d find at an industrial site than at one of today’s fission nuclear power plants.

So there are real advantages to fusion. NIF’s work helps show that there’s a future for fusion energy. But there’s still a very long way to go.

Technologies

Today’s NYT Connections: Sports Edition Hints and Answers for April 4, #193

Three of the four categories are especially tough today. Here are hints and the answers, for the NYT Connections: Sports Edition puzzle, No. 193, for April 4.

Looking for the most recent regular Connections answers? Click here for today’s Connections hints, as well as our daily answers and hints for The New York Times Mini Crossword, Wordle and Strands puzzles.


I only solved one of the four categories for today’s Connections: Sports Edition on my own, so if you need help, you’re not alone. 

The yellow category was pretty simple, but after that I couldn’t make any connections. It might help if you know a lot about a certain NBA player’s resume. Read on for hints and the answers.

Connections: Sports Edition is out of beta now, making its debut on Super Bowl Sunday, Feb. 9. That’s a sign that the game has earned enough loyal players that The Athletic, the subscription-based sports journalism site owned by the Times, will continue to publish it. It doesn’t show up in the NYT Games app but now appears in The Athletic’s own app. Or you can continue to play it free online.  

Read more: NYT Connections: Sports Edition Puzzle Comes Out of Beta

Hints for today’s Connections: Sports Edition groups

Here are four hints for the groupings in today’s Connections: Sports Edition puzzle, ranked from the easiest yellow group to the tough (and sometimes bizarre) purple group.

Yellow group hint: Do better.

Green group hint: March Madness.

Blue group hint: Six-time all-star.

Purple group hint:  Think Wimbledon.

Answers for today’s Connections: Sports Edition groups

Yellow group: Not meeting expectations.

Green group: Teams in the Women’s Final Four.

Blue group: Teams Kawhi Leonard has played for.

Purple group: Ends in a piece of tennis equipment.

Read more: Wordle Cheat Sheet: Here Are the Most Popular Letters Used in English Words

What are today’s Connections: Sports Edition answers?

The yellow words in today’s Connections

The theme is not meeting expectations. The four answers are bust, disappointment, dud and failure.

The green words in today’s Connections

The theme is teams in the Women’s Final Four. The four answers are Bruins, Gamecocks, Huskies and Longhorns.

The blue words in today’s Connections

The theme is teams Kawhi Leonard has played for. The four answers are Aztecs, Clippers, Raptors and Spurs.

The purple words in today’s Connections

The theme is ends in a piece of tennis equipment. The four answers are bracket, eyeball, horseshoes and internet.

Quick tips for Connections: Sports Edition

#1: Don’t grab for the easiest group. For each word, think about other sports categories it might fit in – is this a word that can be used in football, or to describe scoring options?

#2: Second meanings are important. The puzzle loves to use last names and even college names that mean other things, to fool you into thinking they are words, not names.

#3: And the opposite is also true. Words like HURTS might seem like a regular word, but it’s also the last name of at least one pro athlete.

Continue Reading

Technologies

Skip Your iPhone’s Lockscreen: Here’s the Hidden Flashlight Trick You Need to Know

A couple of taps can really make a difference on your iPhone.

Not long ago, your iPhone’s lockscreen would only allow two app shortcuts that you couldn’t change: camera controls and a flashlight toggle. However, iOS 18.2 allows you to customize these shortcuts to almost anything you might want. This small but impactful change is one of many ways iOS 18 supercharges customization for iPhone and iPad users. But what if you still want an easy-to-access way to toggle your flashlight without unlocking your phone? 

Apple introduced an accessibility feature in iOS 14 that, once enabled, allows you to perform actions by just tapping on the back of your phone. The feature is called Tap Back and it remains a sleeper feature that’s sneakily hidden away in your settings menu. Enabling Tap Back essentially allows you to create a button on the back of your iPhone to perform an action without needing to take up any space. 

Once you have Tap Back enabled, it doesn’t take long to see how much of a game-changer it can be with its added convenience. Below, we’ll show you how to set it up so a couple of taps on the back of your iPhone will let you launch just about anything you want. 

For more, check out what’s in the latest iOS 18.4 release.

How to set up Back Tap on iPhone

Whether you want to link Back Tap with your flashlight, camera or launch a different iPhone app, the path through your iPhone settings begins the same way.

On your compatible iPhone (iPhone 8 or later), launch the Settings application and go to Accessibility > Touch > Back Tap. Now you have the option to launch your action (in this case, your flashlight) with either two or three taps. Although two taps is obviously faster, I would suggest three taps because if you fidget with your phone, it’s easy to accidentally trigger the accessibility feature. 

Once you choose a tap option, select the Flashlight option — or a different action if you prefer. You’ll see over 30 options to choose from, including system options like Siri or taking a screenshot, to accessibility-specific functions like opening a magnifier or turning on real-time live captions. You can also set up Back Tap to open the Control Center, go back home, mute your audio, turn the volume up and down and run any shortcuts you’ve downloaded or created.

You’ll know you’ve successfully selected your choice when a blue checkmark appears to the right of the action. You could actually set up two shortcuts this way — one that’s triggered by two taps and one that’s triggered by three taps to the iPhone’s back cover.

Once you exit the Settings application, you can try out the newly enabled Back Tap feature by tapping the back of your iPhone — in my case, to turn on the flashlight. To turn off the flashlight, you can tap on the back of your iPhone as well, but you can also just turn it off from your lock screen if that’s easier.

For more great iPhone tips, here’s how to keep your iPhone screen from dimming all the time and canceling all those subscriptions you don’t want or need.

Continue Reading

Technologies

All the Nintendo Games You Can Update to Switch 2 for Free

Bad news: Mario Kart World will cost $80. Good news: These classic games will get free revamped versions for Switch 2.

Nintendo’s Switch 2 launch event on Wednesday has upset some fans for one key reason: pricing. The new console will be released on June 5 at a starting price of $450, and it will have new games, like Mario Kart World, Kirby Air Riders and Donkey Kong Bananza. But those games could cost as much as $80 (and that’s before factoring in possible tariffs).

Fortunately, Nintendo has also announced that some Nintendo Switch games will get free updates to improve playability on the upcoming console. 

«By connecting your Nintendo Switch 2 to the internet, you can download free updates that may improve performance or add support for features such as GameShare in select games,» the company posted.

Here are all the Nintendo Switch games that can get a free update for the Switch 2.

Nintendo also announced that other Switch games will have upgraded versions of the base game, called Switch 2 Editions. These games, which include The Legend of Zelda: Breath of the Wild and Tears of the Kingdom, may offer improved graphics, unique ways to play the game with the Switch 2 hardware, and other features. 

You can buy a digital or physical copy of these games if you’re purchasing them for the first time. But Switch 2 Edition games are not free if you already own the Switch version of one of these games, so you’ll have to buy an upgrade pack to play the updated version. 

It’s unclear how much Switch 2 Editions of games and upgrade packs will cost, and it’s also unclear how upgrade packs will work with physical versions of Switch games.

The Nintendo Switch 2 will also be backward compatible with certain games. While we don’t know all the Switch games that will be playable on the Switch 2, we know some Switch games have startup (PDF) or in-game (PDF) compatibility issues with the upcoming console.

For more on the Nintendo Switch 2 Direct, here’s what we know about the upcoming console and what to know about games like Mario Kart World and Duskbloods.

Continue Reading

Trending

Copyright © Verum World Media