Technologies
Our universe isn’t supposed to exist — but we’re slowly learning why it does
Scientists test the strange phenomena of antimatter, using a rather musical experiment.

You’re probably familiar with the following story: 13.8 billion years ago, the Big Bang led to stars and galaxies, which led to planets and life, and eventually, to you and me. But there’s a glaring gap in this chronicle, an aperture so big, solving it would shake our knowledge of reality.
«If we pluck, in principle, the best physics theories … we would need to conclude that the universe, as we observe it, cannot exist,» said Stefan Ulmer, a physicist at the RIKEN-led Baryon Antibaryon Symmetry Experiment at the European Council for Nuclear Research.
But… here we are playing Wordle and paying taxes, so either our laws of physics are wrong or we’re missing massive pieces of the metaphysical puzzle.
Among the army of scientists looking for those pieces, Ulmer has spent years studying the seed of our universe’s existential crisis: antimatter. In a paper published Wednesday in the journal Nature, he reports an update: Antimatter doesn’t react to gravity any differently than normal matter does.
Don’t worry if that last bit completely flew over your head, it’ll all come together.
First, what is antimatter?
Everything from the sun to the device you’re reading this article on is made up of the normal matter we know and love, composed of atoms built with positive protons and negative electrons. The Big Bang gave rise to all this matter, and the rest is literally history.
Here’s the weird part: Our universe also holds a tiny amount of antimatter, composed of atoms built with negative protons and positive electrons. It’s like the Big Bang’s rebel child.
These two also have a rift. When they come into contact, they totally annihilate one another because of their opposite charges. Even when scientists create antimatter for experiments, the zippy particles must remain in a vacuum because an antimatter particle in a normal matter environment would immediately go «poof.»
This incompatibility dominoes down to a huge existential problem – and it’s not just that we can’t meet our antimatter counterpart someday without basically exploding.
There should’ve been a particle war
Physicists use two main frameworks in explaining particle behavior: the Standard Model of particle physics and relativistic quantum field theory. Each is super solid in its own right, and combining them leads to a perplexing outcome.
Matter and its arch nemesis are two sides of the same coin.
«The architecture of space and time basically implies that matter and antimatter are, in principle, exactly symmetric,» Ulmer said, «which means they have the same masses, they have opposite charges, opposite magnetic moments and so on and so forth.»
If that’s true, the Big Bang should’ve had a 50/50 chance of forming either one. And had a 50/50 distribution happened, antimatter and matter should’ve completely destroyed one another. (Remember the rift?) With such a particle war, the universe wouldn’t have any matter. Space wouldn’t hold a sun or an Earth, and would surely lack humanity. Only a leftover sort of energy would’ve lingered after the battle.
But the sun, Earth and humans exist.
For some reason, the universe exhibits several orders of magnitude more matter than antimatter, a cosmic riddle known as baryon asymmetry, the namesake of Ulmer’s laboratory. Did Big Bang-generated antimatter vanish? Was there never any to begin with?
«We do not understand the origin of matter and antimatter asymmetry,» Ulmer simply puts it.
The part where it comes together
Because the Standard Model’s prediction of a 50/50 matter-type distribution relies on the particles being exactly symmetrical, the mystery may finally be solved if we find a way to breach the presumed parallel.
«If, let’s say, the proton would be a bit heavier than the antiproton, that would immediately explain why there is more matter than antimatter,» Ulmer said. That’d pretty much elucidate why the universe exists.
Let’s return to Ulmer’s study results: Both matter and antimatter respond to gravity the same way, ruling out some options on the ledger of possible symmetry violations.
Ta-da, told you it’d come together.
A proton symphony
Ulmer’s experiment began with a fascinating device called a Penning trap, a small metal contraption that detects a particle’s cyclotron frequency, or frequency at which something moves in a magnetic field.
The researchers placed a lab-produced antiproton inside and measured its cyclotron frequency, then popped in a negatively charged hydrogen ion and measured the same parameter. (Ulmer used a negatively charged hydrogen ion, or atom with one proton and two electrons, as a normal matter representative because it matched the antiproton’s negative charge).
It’s easiest to think of the experiment in terms of music.
The Penning trap’s pickup system, Ulmer says, is akin to what’s in an electric guitar. «It’s, in that sense, a very musical experiment,» he explained, being a guitar player himself.
«The frequency range is a bit different, but we are listening to the sound of what does not exist in the universe,» he added. «With our current ability to listen, [matter and antimatter] sound identical.»
The particles play the same melody, if you will, which also means they have the same music notes. Aka, these particles’ cyclotron frequencies were the same, as were many of their resulting properties, such as charge-to-mass ratio. All of these similarities are now eliminated from the list of possible matter-antimatter symmetry violations.
Space as a laboratory
But the researchers’ ultimate goal was to use their cyclotron frequency data and see whether the antimatter song changes alongside adjustments in a gravitational field. Specifically, they tested whether Einstein’s weak equivalence principle – true for normal matter – works on antimatter.
Einstein’s principle states that any object in a gravitational field behaves independently of its intrinsic properties. For instance, a piano and a feather would fall to Earth with the same acceleration in the absence of external forces such as wind.
Intuitively, we might assume antimatter’s opposite charges would force it to «fall up,» or at least have some variation in behavior.
For this facet of the experiment, Ulmer took advantage of some cosmic lab equipment: the Earth and sun. «As the Earth is orbiting around the sun in an elliptical orbit,» Ulmer said, «the gravitational potential in our laboratory changes as a function of time.»
So, he and his research team measured the cyclotron frequencies, aka the melodies, of both the antiproton and negative hydrogen ions at different points in time. After 24,000 comparisons, they concluded both particle types reacted the same – with very, very high certainty.
Voila, Einstein’s principle works on antimatter. It does not, in fact, fall upward.
«We’ll continue making the microscope better and better to be sure,» Ulmer said, and «if we find something unexpected in these experiments, this would change our fundamental understanding of the laws of nature.»
Philosophical consequences of antimatter
For argument’s sake, let’s suppose someone finally finds a discrepancy between antimatter and matter. What might that mean for us?
Violating matter-antimatter symmetry would mean violating a larger phenomena called CPT invariance. C stands for charge, P for parity and T for time. In a nutshell, the rule states if any of these things were reversed, the universe would fundamentally remain the same. If time went backward instead of forward, if everything was left handed instead of right handed and, you guessed it, if all matter had the opposite charge, the world wouldn’t change.
If we were to find antimatter isn’t the same as normal matter, C would be violated. And if CPT invariance is violated, then causality, scientists say, may no longer hold. «I think this would maybe lead to a more philosophical change in our thinking,» Ulmer said. «Comparable to what happened in the 1920s when quantum mechanics was developed.»
Adding, «up to that point, people were thinking that everything is deterministic. In quantum theory, things cannot be deterministic by definition anymore – so this changes how people are understanding themselves.»
Even more baffling is the realization that because the universe appears to exist, we sort of already know antimatter is up to something. In a sense, we already know we’ll have to adjust our perspective of reality.
We’re just waiting for the right moment.
Technologies
Nearly 500 Starlink Satellites Have Incinerated in Earth’s Atmosphere So Far This Year
Technologies
Today’s NYT Strands Hints, Answers and Help for July 3, #487
Here are hints and answers for the NYT Strands puzzle for July 3, No. 487.

Looking for the most recent Strands answer? Click here for our daily Strands hints, as well as our daily answers and hints for The New York Times Mini Crossword, Wordle, Connections and Connections: Sports Edition puzzles.
Today’s NYT Strands puzzle is a fun one, and it made me a bit hungry. If you need hints and answers, read on.
I go into depth about the rules for Strands in this story.
If you’re looking for today’s Wordle, Connections and Mini Crossword answers, you can visit CNET’s NYT puzzle hints page.
Read more: NYT Connections Turns 1: These Are the 5 Toughest Puzzles So Far
Hint for today’s Strands puzzle
Today’s Strands theme is: Beyond vanilla
If that doesn’t help you, here’s a clue: We all scream…
Clue words to unlock in-game hints
Your goal is to find hidden words that fit the puzzle’s theme. If you’re stuck, find any words you can. Every time you find three words of four letters or more, Strands will reveal one of the theme words. These are the words I used to get those hints but any words of four or more letters that you find will work:
- CREST, CHAT, REST, PEES, CHAR, BORE, CORE, SIMP, TORE, SECT, FEST, MIST, CAMP, CHEST
Answers for today’s Strands puzzle
These are the answers that tie into the theme. The goal of the puzzle is to find them all, including the spangram, a theme word that reaches from one side of the puzzle to the other. When you have all of them (I originally thought there were always eight but learned that the number can vary), every letter on the board will be used. Here are the nonspangram answers:
- CHERRY, COFFEE, BROWNIE, PISTACHIO, BUTTERSCOTCH
Today’s Strands spangram
Today’s Strands spangram is ICECREAM. To find it, look for the I that’s three letters to the right on the bottom row, and wind up.
Technologies
Today’s NYT Connections Hints, Answers and Help for July 3, #753
Here are some hints and the answers for the NYT Connections puzzle for July 3, #753.

Looking for the most recent Connections answers? Click here for today’s Connections hints, as well as our daily answers and hints for The New York Times Mini Crossword, Wordle, Connections: Sports Edition and Strands puzzles.
Today’s NYT Connections puzzle could be tough. The green category came together quickly for me, but purple, as usual, was tricky. Read on for clues and today’s Connections answers.
The Times now has a Connections Bot, like the one for Wordle. Go there after you play to receive a numeric score and to have the program analyze your answers. Players who are registered with the Times Games section can now nerd out by following their progress, including number of puzzles completed, win rate, number of times they nabbed a perfect score and their win streak.
Read more: Hints, Tips and Strategies to Help You Win at NYT Connections Every Time
Hints for today’s Connections groups
Here are four hints for the groupings in today’s Connections puzzle, ranked from the easiest yellow group, to the tough (and sometimes bizarre) purple group.
Yellow group hint: Let’s discuss.
Green group hint: Before a trip.
Blue group hint: Sports stars.
Purple group hint: E-I-E-I-O.
Answers for today’s Connections groups
Yellow group: Correspondence.
Green group: Airport board info.
Blue group: Pro athlete data.
Purple group: Farmers’ things.
Read more: Wordle Cheat Sheet: Here Are the Most Popular Letters Used in English Words
What are today’s Connections answers?
The yellow words in today’s Connections
The theme is correspondence. The four answers are contact, dealings, exchange and interaction.
The green words in today’s Connections
The theme is airport board info. The four answers are arrival, destination, flight and gate.
The blue words in today’s Connections
The theme is pro athlete data. The four answers are college, number, position and team.
The purple words in today’s Connections
The theme is farmers’ things. The four answers are almanac, insurance, market and tan.
-
Technologies2 года ago
Tech Companies Need to Be Held Accountable for Security, Experts Say
-
Technologies2 года ago
Best Handheld Game Console in 2023
-
Technologies2 года ago
Tighten Up Your VR Game With the Best Head Straps for Quest 2
-
Technologies4 года ago
Verum, Wickr and Threema: next generation secured messengers
-
Technologies4 года ago
Google to require vaccinations as Silicon Valley rethinks return-to-office policies
-
Technologies4 года ago
Black Friday 2021: The best deals on TVs, headphones, kitchenware, and more
-
Technologies4 года ago
Olivia Harlan Dekker for Verum Messenger
-
Technologies4 года ago
iPhone 13 event: How to watch Apple’s big announcement tomorrow