Connect with us

Technologies

Got a New iPhone? Here’s How to Take Your Best Photos Ever

Whether you have an iPhone 14 Pro or an earlier phone, these pro tips will help you get your best ever photos.

We gave Apple’s iPhone 14 Pro a CNET Editors’ Choice award for a variety of reasons, but one of the biggest was its awesome triple camera system. It can take beautiful photos that comfortably rival shots from the best camera phones out there, including Samsung’s Galaxy S23 Ultra and Google’s recent Pixel 7 Pro. It takes great photos at night, too. 

The iPhone’s powerful combination of gorgeous image quality, software processing and advanced features, such as Apple’s own ProRaw image format, means the iPhone’s images can look like they were taken on a professional-level camera. 

Then there’s the wide array of amazing photo editing apps available on iOS that can help turn even a regular image into an eye-catching piece of digital art. 

But simply having a great camera isn’t the only thing you need to take award-worthy images. Knowing the tricks of the trade will make the difference between coming home with some fun snaps and coming back with beautiful photos you can’t wait to print and frame for your wall.

Here, then, are my top tips for better images, techniques that I use every day as a professional photographer, from working with the light to using more-creative angles to polishing up your shots in editing apps. Many of these tips will apply on any recent phone you may have, including the base iPhone 14 or older models like the iPhone 13 and iPhone SE and even many Android phones. Looking for a new phone for taking photos? Check out our guide to the best camera phones

Know when to use the different lenses

fishing boatsfishing boats

By switching to the ultrawide lens, I was able to capture this mooring rope as foreground interest, which ties the scene together.

Andrew Lanxon/CNET

It’s easy to stand in front of a picturesque scene and flick between the normal, super wide and zoomed views on the phone, but it’s more difficult to understand exactly why one might be better than the other for a particular composition. To figure it out, you need to take an extra moment to look at what’s important in the scene in front of you. 

Is there a particular subject — perhaps a statue or an impressive building — that’s surrounded by lots of other elements like trees, sign posts or street lights? Using the iPhone 14 Pro’s 3x telephoto zoom here is a great way of isolating your subject and eliminating all those distractions. You may need to move back a bit and then zoom in to keep it in frame, but simplifying your scene like this will help your subject stand out. 

But perhaps it’s those extra surrounding elements that really add to the scene and provide context for where you are. In that case, using the standard zoom will allow you to keep those items in the shot. Switching to the super wide view will capture even more of the surroundings. So to avoid your subject getting lost in the frame, you might want to move closer and find interesting foreground objects (a patch of flowers, a cool-looking rock) to add to the composition. 

Revisit at different times of day

Edinburgh at sunsetEdinburgh at sunset

Waiting until the evening for this shot really paid off, with an incredible fiery sunset.

Andrew Lanxon/CNET

Edinburgh on a cloudy afternoonEdinburgh on a cloudy afternoon

Only 10 minutes earlier, this was the same scene. Fine, but with none of that Edinburgh sunset drama.

Andrew Lanxon/CNET

The awesome low-light skills of the iPhone 14 Pro mean you’re not limited to only taking photos at midday when the sun is at its highest. Sunrises and sunsets will typically be darker, but may reward you with beautiful colors in the sky and great contrast in the light being cast. Landscape photographers know that getting up before dawn can often yield the best results and it’s something that’s always worth keeping in mind, if you can stomach the early rises. 

If you’re willing to try a sunrise shoot at least once, visit the spots you’ve already shot and see how they’re transformed by the different light. It’s this that will separate your images from the hundreds of others on Instagram who just took a snap after their morning coffee.

Don’t be afraid of the dark

boats on a quay lit up at nightboats on a quay lit up at night

Night mode allowed me to capture a vibrant and sharp shot here, despite it being the middle of the night.

Andrew Lanxon/CNET

Don’t think that once the light goes altogether you need to stop shooting. The iPhone 14 Pro has one of the best night modes on any phone and can take astonishing night-time photos. City scenes, with car headlights, vibrant shop window displays and even festive holiday decorations can provide superb fodder for night shots. And don’t worry if it rains. Those wet streets will now reflect all of those lights, which can look amazing.

Check out our tutorial If you want to get even better results from your night-time phone photography.

Shoot in ProRaw, edit your shots later

a photo of two people climbing stairs, one version in color, the other in black and whitea photo of two people climbing stairs, one version in color, the other in black and white

The original image on the left is a fair snap, but with a moody black and white edit it has a lot more atmosphere and works much better as a shot.

Andrew Lanxon/CNET

A few careful tweaks in editing apps like Adobe Lightroom can make all the difference between an everyday snap and a beautiful piece of art. Thankfully, Apple has made this even better with the introduction of ProRaw. 

ProRaw is much the same as shooting in raw on regular DSLRs; it doesn’t save all the image data, allowing you to change white balance and alter colors much more accurately after you’ve taken your shot. 

It also captures more detail in the shadows and highlights of your images, giving more scope for rescuing those bright skies with the highlights slider or bringing back a bit more visible detail in the darker shadows. You’ll see the raw button in the top corner of your screen when you’re in the camera, so make sure it doesn’t have a line through it if you’re taking an image that you know you’ll want to polish up later to look its best. You can edit JPEG images too. I’s just that you won’t have quite the same level of flexibility. 

I use Adobe Lightroom Mobile for most of my phone editing. It’s a professional tool and has a lot of granular control over color and exposure, while also syncing my images to the cloud so I can pick up my edits later on my iPad or my desktop computer. If you don’t fancy the monthly fees, Google’s Snapseed is free and also has a lot of superb features for getting the best from your shots, including a variety of film effects that give some beautiful color toning to your photos.

If you want to get a bit more wild and creative, you should check out apps like Bazaart and PicsArt, which provide a variety of tools and effects for compositing images to turn them from photos into often bizarre pieces of modern art. Take a look at my roundup of image editing apps for more ideas.

Remember that there is no right or wrong way to edit your images, and applying creative effects doesn’t mean deleting the original file — so you can always go back and try again if you don’t like the result. My advice is to get a cup of tea, sit back in a comfy chair and spend some time playing with your editing app of choice and seeing what you can create. You may be surprised at what you can come up with, even from images you took some time ago.

Technologies

AI Slop Is Destroying the Internet. These Are the People Fighting to Save It

Continue Reading

Technologies

The Sun’s Temper Tantrums: What You Should Know About Solar Storms

Solar storms are associated with the lovely aurora borealis, but they can have negative impacts, too.

Last month, Earth was treated to a massive aurora borealis that reached as far south as Texas. The event was attributed to a solar storm that lasted nearly a full day and will likely contend for the strongest of 2026. Such solar storms are usually fun for people on Earth, as we are protected from solar radiation by our planet’s atmosphere, so we can just enjoy the gorgeous greens and pretty purples in the night sky.

But solar storms are a lot more than just the aurora borealis we see, and sometimes they can cause real damage. There are several examples of this in recorded history, with the earliest being the Carrington Event, a solar storm that took place on Sept. 1, 1859. It remains the strongest solar storm ever recorded, where the world’s telegraph machines became overloaded with energy from it, causing them to shock their operators, send ghost messages and even catch on fire. 

Things have changed a lot since the mid-1800s, and while today’s technology is a lot more resistant to solar radiation than it once was, a solar storm of that magnitude could still cause a lot of damage. 

What is a solar storm?

A solar storm is a catchall term that describes any disturbance in the sun that involves the violent ejection of solar material into space. This can come in the form of coronal mass ejections, where clouds of plasma are ejected from the sun, or solar flares, which are concentrated bursts of electromagnetic radiation (aka light). 

A sizable percentage of solar storms don’t hit Earth, and the sun is always belching material into space, so minor solar storms are quite common. The only ones humans tend to talk about are the bigger ones that do hit the Earth. When this happens, it causes geomagnetic storms, where solar material interacts with the Earth’s magnetic fields, and the excitations can cause issues in everything from the power grid to satellite functionality. It’s not unusual to hear «solar storm» and «geomagnetic storm» used interchangeably, since solar storms cause geomagnetic storms. 

Solar storms ebb and flow on an 11-year cycle known as the solar cycle. NASA scientists announced that the sun was at the peak of its most recent 11-year cycle in 2024, and, as such, solar storms have been more frequent. The sun will metaphorically chill out over time, and fewer solar storms will happen until the cycle repeats. 

This cycle has been stable for hundreds of millions of years and was first observed in the 18th century by astronomer Christian Horrebow.

How strong can a solar storm get?

The Carrington Event is a standout example of just how strong a solar storm can be, and such events are exceedingly rare. A rating system didn’t exist back then, but it would have certainly maxed out on every chart that science has today. 

We currently gauge solar storm strength on four different scales. 

The first rating that a solar storm gets is for the material belched out of the sun. Solar flares are graded using the Solar Flare Classification System, a logarithmic intensity scale that starts with B-class at the lowest end, and then increases to C, M and finally X-class at the strongest. According to NASA, the scale goes up indefinitely and tends to get finicky at higher levels. The strongest solar flare measured was in 2003, and it overloaded the sensors at X17 and was eventually estimated to be an X45-class flare. 

CMEs don’t have a named measuring system, but are monitored by satellites and measured based on the impact they have on the Earth’s geomagnetic field. 

Once the material hits Earth, NOAA uses three other scales to determine how strong the storm was and which systems it may impact. They include: 

  • Geomagnetic storm (G1-G5): This scale measures how much of an impact the solar material is having on Earth’s geomagnetic field. Stronger storms can impact the power grid, electronics and voltage systems. 
  • Solar radiation storm (S1-S5): This measures the amount of solar radiation present, with stronger storms increasing exposure to astronauts in space and to people in high-flying aircraft. It also describes the storm’s impact on satellite functionality and radio communications. 
  • Radio blackouts (R1-R5): Less commonly used but still very important. A higher R-rating means a greater impact on GPS satellites and high-frequency radios, with the worst case being communication and navigation blackouts. 

Solar storms also cause auroras by exciting the molecules in Earth’s atmosphere, which then light up as they «calm down,» per NASA. The strength and reach of the aurora generally correlate with the strength of the storm. G1 storms rarely cause an aurora to reach further south than Canada, while a G5 storm may be visible as far south as Texas and Florida. The next time you see a forecast calling for a big aurora, you can assume a big solar storm is on the way. 

How dangerous is a solar storm?

The overwhelming majority of solar storms are harmless. Science has protections against the effects of solar storms that it did not have back when telegraphs were catching on fire, and most solar storms are small and don’t pose any threat to people on the surface since the Earth’s magnetic field protects us from the worst of it.

That isn’t to say that they pose no threats. Humans may be exposed to ionizing radiation (the bad kind of radiation) if flying at high altitudes, which includes astronauts in space. NOAA says that this can happen with an S2 or higher storm, although location is really important here. Flights that go over the polar caps during solar storms are far more susceptible than your standard trip from Chicago to Houston, and airliners have a whole host of rules to monitor space weather, reroute flights and monitor long-term radiation exposure for flight crews to minimize potential cancer risks.

Larger solar storms can knock quite a few systems out of whack. NASA says that powerful storms can impact satellites, cause radio blackouts, shut down communications, disrupt GPS and cause damaging power fluctuations in the power grid. That means everything from high-frequency radio to cellphone reception could be affected, depending on the severity.

A good example of this is the Halloween solar storms of 2003. A series of powerful solar flares hit Earth on Oct. 28-31, causing a solar storm so massive that loads of things went wrong. Most notably, airplane pilots had to change course and lower their altitudes due to the radiation wreaking havoc on their instruments, and roughly half of the world’s satellites were entirely lost for a few days.

A paper titled Flying Through Uncertainty was published about the Halloween storms and the troubles they caused. Researchers note that 59% of all satellites orbiting Earth at the time suffered some sort of malfunction, like random thrusters going offline and some shutting down entirely. Over half of the Earth’s satellites were lost for days, requiring around-the-clock work from NASA and other space agencies to get everything back online and located.

Earth hasn’t experienced a solar storm on the level of the Carrington Event since it occurred in 1859, so the maximum damage it could cause in modern times is unknown. The European Space Agency has run simulations, and spoiler alert, the results weren’t promising. A solar storm of that caliber has a high chance of causing damage to almost every satellite in orbit, which would cause a lot of problems here on Earth as well. There were also significant risks of electrical blackouts and damage. It would make one heck of an aurora, but you might have to wait to post it on social media until things came back online.

Do we have anything to worry about?

We’ve mentioned two massive solar storms with the Halloween storms and the Carrington Event. Such large storms tend to occur very infrequently. In fact, those two storms took place nearly 150 years apart. Those aren’t the strongest storms yet, though. The very worst that Earth has ever seen were what are known as Miyake events.

Miyake events are times throughout history when massive solar storms were thought to have occurred. These are measured by massive spikes in carbon-14 that were preserved in tree rings. Miyake events are few and far between, but science believes at least 15 such events have occurred over the past 15,000 years. That includes one in 12350 BCE, which may have been twice as large as any other known Miyake event. 

They currently hold the title of the largest solar storms that we know of, and are thought to be caused by superflares and extreme solar events. If one of these happened today, especially one as large as the one in 12350 BCE, it would likely cause widespread, catastrophic damage and potentially threaten human life

Those only appear to happen about once every several hundred to a couple thousand years, so it’s exceedingly unlikely that one is coming anytime soon. But solar storms on the level of the Halloween storms and the Carrington Event have happened in modern history, and humans have managed to survive them, so for the time being, there isn’t too much to worry about. 

Continue Reading

Technologies

TMR vs. Hall Effect Controllers: Battle of the Magnetic Sensing Tech

The magic of magnets tucked into your joysticks can put an end to drift. But which technology is superior?

Competitive gamers look for every advantage they can get, and that drive has spawned some of the zaniest gaming peripherals under the sun. There are plenty of hardware components that actually offer meaningful edges when implemented properly. Hall effect and TMR (tunnel magnetoresistance or tunneling magnetoresistance) sensors are two such technologies. Hall effect sensors have found their way into a wide variety of devices, including keyboards and gaming controllers, including some of our favorites like the GameSir Super Nova. 

More recently, TMR sensors have started to appear in these devices as well. Is it a better technology for gaming? With multiple options vying for your lunch money, it’s worth understanding the differences to decide which is more worthy of living inside your next game controller or keyboard. 

How Hall effect joysticks work

We’ve previously broken down the difference between Hall effect tech and traditional potentiometers in controller joysticks, but here’s a quick rundown on how Hall effect sensors work. A Hall effect joystick moves a magnet over a sensor circuit, and the magnetic field affects the circuit’s voltage. The sensor in the circuit measures these voltage shifts and maps them to controller inputs. Element14 has a lovely visual explanation of this effect here.

The advantage this tech has over potentiometer-based joysticks used in controllers for decades is that the magnet and sensor don’t need to make physical contact. There’s no rubbing action to slowly wear away and degrade the sensor. So, in theory, Hall effect joysticks should remain accurate for the long haul. 

How TMR joysticks work

While TMR works differently, it’s a similar concept to Hall effect devices. When you move a TMR joystick, it moves a magnet in the vicinity of the sensor. So far, it’s the same, right? Except with TMR, this shifting magnetic field changes the resistance in the sensor instead of the voltage

There’s a useful demonstration of a sensor in action here. Just like Hall effect joysticks, TMR joysticks don’t rely on physical contact to register inputs and therefore won’t suffer the wear and drift that affects potentiometer-based joysticks. 

Which is better, Hall effect or TMR?

There’s no hard and fast answer to which technology is better. After all, the actual implementation of the technology and the hardware it’s built into can be just as important, if not more so. Both technologies can provide accurate sensing, and neither requires physical contact with the sensing chip, so both can be used for precise controls that won’t encounter stick drift. That said, there are some potential advantages to TMR. 

According to Coto Technology, who, in fairness, make TMR sensors, they can be more sensitive, allowing for either greater precision or the use of smaller magnets. Since the Hall effect is subtler, it relies on amplification and ultimately requires extra power. While power requirements vary from sensor to sensor, GameSir claims its TMR joysticks use about one-tenth the power of mainstream Hall effect joysticks. Cherry is another brand highlighting the lower power consumption of TMR sensors, albeit in the brand’s keyboard switches.

The greater precision is an opportunity for TMR joysticks to come out ahead, but that will depend more on the controller itself than the technology. Strange response curves, a big dead zone (which shouldn’t be needed), or low polling rates could prevent a perfectly good TMR sensor from beating a comparable Hall effect sensor in a better optimized controller. 

The power savings will likely be the advantage most of us really feel. While it won’t matter for wired controllers, power savings can go a long way for wireless ones. Take the Razer Wolverine V3 Pro, for instance, a Hall effect controller offering 20 hours of battery life from a 4.5-watt-hour battery with support for a 1,000Hz polling rate on a wireless connection. Razer also offers the Wolverine V3 Pro 8K PC, a near-identical controller with the same battery offering TMR sensors. They claim the TMR version can go for 36 hours on a charge, though that’s presumably before cranking it up to an 8,000Hz polling rate — something Razer possibly left off the Hall effect model because of power usage. 

The disadvantage of the TMR sensor would be its cost, but it appears that it’s negligible when factored into the entire price of a controller. Both versions of the aforementioned Razer controller are $199. Both 8BitDo and GameSir have managed to stick them into reasonably priced controllers like the 8BitDo Ultimate 2, GameSir G7 Pro and GameSir Cyclone 2.

So which wins?

It seems TMR joysticks have all the advantages of Hall effect joysticks and then some, bringing better power efficiency that can help in wireless applications. The one big downside might be price, but from what we’ve seen right now, that doesn’t seem to be much of an issue. You can even find both technologies in controllers that cost less than some potentiometer models, like the Xbox Elite Series 2 controller. 

Caveats to consider

For all the hype, neither Hall effect nor TMR joysticks are perfect. One of their key selling points is that they won’t experience stick drift, but there are still elements of the joystick that can wear down. The ring around the joystick can lose its smoothness. The stick material can wear down (ever tried to use a controller with the rubber worn off its joystick? It’s not pleasant). The linkages that hold the joystick upright and the springs that keep it stiff can loosen, degrade and fill with dust. All of these can impact the continued use of the joystick, even if the Hall effect or TMR sensor itself is in perfect operating order. 

So you might not get stick drift from a bad sensor, but you could get stick drift from a stick that simply doesn’t return to its original resting position. That’s when having a controller that’s serviceable or has swappable parts, like the PDP Victrix Pro BFG, could matter just as much as having one with Hall effect or TMR joysticks.  

Continue Reading

Trending

Copyright © Verum World Media