Technologies
2 Million-Year-Old DNA, the Oldest Ever Recovered, Opens Window to the Past
The prehistoric forest of northern Greenland was home to mastodons, reindeer, hares and an abundance of plant life.

As early as 2006, Eske Willerslev and members of his lab ventured into northern Greenland with a drill, extracting cores of sediment from the Kap København Formation. They were hunting for environmental DNA, or eDNA, in their cores — puzzle pieces that could help paint a picture of the plants and animals present in the region 2 million years ago.
But for the longest time, they came up empty-handed. «Every time we had improvements in terms of DNA extraction or sequencing technology, we’d revisit these samples,» Willerslev, an evolutionary geneticist at the University of Cambridge, said in a press briefing on Tuesday.
No matter what, the researchers failed to get what they were looking for. The run of bad luck saw members of the lab turn to the occult for an explanation; they named their troubles «the curse of the Kap København Formation.»
But with steady improvements in DNA extraction and sequencing technologies, the curse was finally broken.
On Wednesday, the team published the results of their 16-year pursuit of ancient DNA in the journal Nature. They were able to sequence eDNA from 41 sediment samples, collected in 2006, 2012 and 2016 from the Kap København Formation and undisturbed by humans for 2 million years. Their analyses revealed that a lush forest replete with reindeer, hares, mastodons and a wide variety of flora once stood in what is now a dull, gray polar desert.
Willerslev, a pioneering geneticist who has previously recovered eDNA from ice cores and shown it could survive in glaciers, noted that the «breakthrough» relied on expertise, advances in genetic sequencing techniques and bioinformatics.
History in the soil
DNA, which carries the instructions for life, is not a particularly sturdy molecule. The bonds that hold it together are weak and, over time, they break down.
This is why, even though we have an abundance of dinosaur fossils, we don’t have any dinosaur DNA. The beasts died out 66 million years ago, and the DNA would simply not survive that long.
When DNA degrades, the once-long strands of information break apart into smaller and smaller pieces. It becomes almost impossible to piece these fragments back together in the right configuration, especially if they are mixed in with a lot of other DNA from the environment.
Think of DNA like a book. Let’s say Alice in Wonderland. If you have the whole book, you can understand the story. But if you’re missing a few pages, you might not understand where the White Rabbit came from or why Alice ended up at a tea party with the Mad Hatter. If you’re missing lots of pages, you probably can’t even tell what the story was to begin with. Alice? Who’s that? And why is she 10 feet tall?
That’s the problem working with ancient DNA. You might be able to retrieve small fragments of DNA but it is generally too fragmented to be able to tell where it came from — and certainly too fragmented to understand where it came from.
But under certain circumstances, DNA fragments can survive deep time.
«The ‘survival time’ of DNA in the environment is incredibly variable and strongly dependent on the environment itself,» notes Michael Knapp, an ecologist and geneticist at Otago University in New Zealand.
Previously, the oldest DNA ever recovered came from mammoth fossils found in the Siberian permafrost. In a Nature paper in 2021, researchers showed that DNA from the mammoth teeth was, potentially, about 1.6 million years old. The DNA recovered was broken up into small fragments but they weren’t degraded so much they couldn’t be pieced back together. The cold temperature of the permafrost certainly helped with this.
It’s a similar story in the new study.
Willerslev and his collaborators postulate that the long survival time of the DNA in their sediment cores was possible for two reasons. The first is the constant cold temperature of the polar desert. The second is the way the DNA is bound to minerals in the cores, preventing degradation over longer time scales. The idea is that these mineral surfaces prevent enzymes from breaking down the DNA.
Karina Sand, a geochemist at the University of Copenhagen and co-author on the paper, explained that one of the technological leaps that enabled this feat was extracting DNA from clay and quartz minerals. The latter provided an abundance of DNA, but the former was harder to extract good DNA from. Fortunately, that leaves the door open for even older DNA extraction.
«If we can get better at extracting the DNA from the clay minerals, then we think we can go further back in time with DNA,» she said.
The research team was able to extract DNA from the sediment cores and begin to read the surviving fragments. These fragments were then compared to a database of genomes (complete DNA sequences) of modern plants and animals, looking for DNA matches. Over time, they were able to fill the blank pages of history, demonstrating the thriving ecosystem of ancient Greenland.
The ancient forest of Greenland
Two million years ago, Greenland was a different place.
«The Kap København ecosystem, which has no present-day equivalent, existed at considerably higher temperatures than we have today,» noted Mikkel Pederson, a geneticist at the Lundbeck Foundation GeoGenetics Centre, in a press release.
In northern Greenland, average temperatures during this time were likely more than 11 degrees Celsius (around 20 degrees Fahrenheit) higher than they are today. Previous studies at Kap København have shown evidence it was home to a boreal forest, but the eDNA extracted and analyzed in the new study provides a complete reimagining of the area, adding in megafauna and a wide variety of plant life.
The headline mammal DNA found in the cores is undoubtedly the mastodon — which is having a bit of a moment thanks to social media. Some of the eDNA found matched to the Elephantidae family, which includes elephants, mammoths and mastodons. It seems mastodons may have roamed Greenland 2 million years ago, though the researchers note the evidence isn’t extremely strong and is based on relatively weak DNA matches.
The team also found DNA related to reindeer, hares and rabbits, and the subfamily of animals that includes lemmings, voles and muskrats. Notably absent, however, is DNA from carnivores. The researchers suggest this is because of their comparably small biomass in relation to the herbivores. «It’s basically a numbers game,» Willerslev said.
One of the more intriguing DNA finds is of the Atlantic horseshoe crab. The species is no longer found at such northern latitudes, and the authors suggest this may mean Kap København experienced warmer sea surface temperatures 2 million years ago. Previous research has suggested the sea surface was warmer at higher latitudes, and the discovery of horseshoe crab DNA lends further support to this hypothesis.
Warmer temperatures are key. Multiple authors on the paper have reiterated the importance of understanding an ecosystem like this, given the effects of global warming. Two million years ago, the climate was changing and the eDNA shows that Arctic species were living with species that loved much warmer climes. This helps scientists to get an understanding of how nature was adapting to those changes and, within the DNA signatures, there may be clues to ways we could help modern-day fauna and flora survive extreme climatic swings.
One of the significant limitations of studying eDNA is that scientists have to postulate about the kinds of species that were living at the time. Knapp notes closely related ancient species might give you a DNA match but this is «somewhat inaccurate» — it provides an approximation of what existed. We may only be able to assign the DNA at a family or order level, so we can’t know exactly what roamed the boreal forest of Greenland 2 million years ago.
Even so, the recovery of DNA this old opens a new window to the prehistoric Earth, a pathway for scientists and researchers to probe the ecosystems that existed long before humans were around. The team will head to northern Canada to extract cores next year and hope to go even further back in time.
The extraction method may even lend itself to finding DNA in more humid climates across the world, like in Africa and Australia.
«If we can begin to explore ancient DNA in clay grains from Africa, we may be able to gather ground-breaking information about the origin of many different species —perhaps even new knowledge about the first humans and their ancestors,» Willerslev said in a statement.
«The possibilities are endless.»
Technologies
Tariffs Explained: Latest on Trump’s Shifting Import Tax Plan, and What It Means
Technologies
Apple, I’m (Sky) Blue About Your iPhone 17 Air Color
Commentary: The rumored new hue of the iPhone 17 Air is more sky blah than sky blue.

I can’t help but feel blue about the latest rumor that Apple’s forthcoming iPhone 17 Air will take flight in a subtle, light-hued color called sky blue.
Sky blue isn’t a new color for Apple. It’s the featured shade of the current M4 MacBook Air, a shimmer of cerulean so subtle as to almost be missed. It’s silver left too close to an aquarium; silver that secretly likes to think it’s blue but doesn’t want everyone else to notice.
Do Apple employees get to go outside and see a real blue sky? It’s actually vivid, you can check for yourself. Perhaps the muted sky blue color reflects a Bay Area late winter/early spring frequent layer of clouds like we typically see here in Seattle.
«Who cares?» you might find yourself saying. «Everyone gets a case anyway.» I hear you and everyone else who’s told me that. But design-focused Apple is as obsessive about colors as they are about making their devices thinner. And I wonder if their heads are in the clouds about which hues adorn their pro products.
Making the case for a caseless color iPhone
I’m more invested in this conversation than most — I’m one of those freaks who doesn’t wrap my phone in a case. I find cases bulky and superfluous, and I like to be able to see Apple’s design work. Also, true story, I’ve broken my iPhone screen only twice: First when it was in a «bumper» that Apple sent free in response to the iPhone 4 you’re-holding-it-wrong Antennagate fiasco, and second when trying to take long exposure starry night photos using what I didn’t realize was a broken tripod mount. My one-week-old iPhone 13 Pro slipped sideways and landed screen-first on a pointy rock. A case wouldn’t have saved it.
My current model is an iPhone 16 Pro in black titanium — which I know seems like avoiding color entirely — but previously I’ve gone for colors like blue titanium and deep purple. I wanted to like deep purple the most but it came across as, in the words of Patrick Holland in his iPhone 14 Pro review, «a drab shade of gray or like Grimace purple,» depending on the light.
Pros can be bold, too
Maybe the issue is too many soft blues. Since the iPhone Pro age began with the iPhone 11 Pro, we’ve seen variations like blue titanium (iPhone 15 Pro), sierra blue (iPhone 13 Pro) and pacific blue (iPhone 12 Pro).
Pacific blue is the boldest of the bunch, if by bold you mean dark enough to discern from silver, but it’s also close enough to that year’s graphite color that seeing blue depends on the surrounding lighting. By comparison, the blue (just «blue») color of the iPhone 12 was unmistakably bright blue.
In fact, the non-Pro lines have embraced vibrant colors. It’s as if Apple is equating «pro» with «sophisticated,» as in «A real pro would never brandish something this garish.» I see this in the camera world all the time: If it’s not all-black, it’s not a «serious» camera.
And yet I know lots of pros who are not sophisticated — proudly so. People choose colors to express themselves, so forcing that idea of professionalism through color feels needlessly restrictive. A bright pink iPhone 16 might make you smile every time you pick it up but then frown because it doesn’t have a telephoto camera.
Color is also important because it can sway a purchase decision. «I would buy a sky blue iPhone yesterday,» my colleague Gael Cooper texted after the first rumor popped online. When each new generation of iPhones arrive, less technically different than the one before, a color you fall in love with can push you into trading in your perfectly-capable model for a new one.
And lest you think Apple should just stick with black and white for its professional phones: Do you mean black, jet black, space black, midnight black, black titanium, graphite or space gray? At least the lighter end of the spectrum has stuck to just white, white titanium and silver over the years.
Apple never got ahead by being beige
I’m sure Apple has reams of studies and customer feedback that support which colors make it to production each year. Like I said, Apple’s designers are obsessive (in a good way). And I must remind myself that a sky blue iPhone 17 Air is a rumored color on a rumored product so all the usual caveats apply.
But we’re talking about Apple here. The scrappy startup that spent more than any other company on business cards at the time because each one included the old six-color Apple logo. The company that not only shaped the first iMac like a tipped-over gumdrop, that not only made the case partially see-through but then made that cover brilliant Bondi blue.
Embrace the iPhone colors, Apple.
If that makes you nervous, don’t worry: Most people will put a case on it anyway.
Technologies
Astronomers Say There’s an Increased Possibility of Life on This Distant Planet
Using the James Webb Space Telescope, astronomers are working to confirm potential evidence of life on a distant exoplanet dubbed K2-18b.

Astronomers are nearing a statistically significant finding that could confirm the potential signs of life detected on the distant exoplanet K2-18b are no accident.
The team of astronomers, led by the University of Cambridge, used data from the James Webb Space Telescope (which has only been in use since the end of 2021) to detect chemical traces of dimethyl sulfide (DMS) and/or dimethyl disulfide (DMDS), which they say can only be produced by life such as phytoplankton in the sea.
According to the university, «the results are the strongest evidence yet that life may exist on a planet outside our solar system.»
The findings were published this week in the Astrophysical Journal Letters and point to the possibility of an ocean on this planet’s surface, which scientists have been hoping to discover for years. In the abstract for the paper, the team says, «The possibility of hycean worlds, with planet-wide oceans and H2-rich atmospheres, significantly expands and accelerates the search for habitable environments elsewhere.»
Not everyone agrees, however, that what the team found proves there’s life on the exoplanet.
Science writer and OpenMind Magazine founder Corey S. Powell posted about the findings on Bluesky, writing, «The potential discovery of alien life is so enticing that it drags even reputable outlets into running naive or outright misleading stories.» He added, «Here we go again with planet K2-18b.Um….there’s strong evidence of non-biological sources of the molecule DMS.»
K2-18b is 124 light-years away and much larger than Earth (more than eight times our mass), but smaller than Neptune. The search for signs of even basic life on a planet like this increases the chances that there are more planets like Earth that may be inhabitable, with temperatures and atmospheres that could sustain human-like lifeforms. The team behind the paper hopes that more study with the James Webb Space Telescope will help confirm their initial findings.
More research to do on finding life on K2-18b
The exoplanet K2-18b is not the only place where scientists are exploring the possibility of life, and this research is still an early step in the process, said Christopher Glein, a geochemist, planetary researcher and lead scientist at San Antonio’s Southwest Research Institute. Excitement over the significance of the research, he said, should be tempered.
«We need to be careful here,» Glein said. «It appears that there is something in the data that can’t be explained, and DMS/DMDS can provide an explanation. But this detection is stretching the limits of JWST’s capabilities.»
Glein added, «Further work is needed to test whether these molecules are actually present. We also need complementary research assessing the abiotic background on K2-18b and similar planets. That is, the chemistry that can occur in the absence of life in this potentially exotic environment. We might be seeing evidence of some cool chemistry rather than life.»
The TRAPPIST-1 planets, he said, are being researched as potentially habitable, as is LHS 1140b, which he said «is another astrobiologically significant exoplanet, which might be a massive ocean world.»
As for K2-18b, Glein said many more tests need to be performed before there’s consensus on life existing on it.
«Finding evidence of life is like prosecuting a case in the courtroom,» Glein said. «Multiple independent lines of evidence are needed to convince the jury, in this case the worldwide scientific community.» He added, «If this finding holds up, then that’s Step 1.»
-
Technologies2 года ago
Tech Companies Need to Be Held Accountable for Security, Experts Say
-
Technologies2 года ago
Best Handheld Game Console in 2023
-
Technologies2 года ago
Tighten Up Your VR Game With the Best Head Straps for Quest 2
-
Technologies4 года ago
Verum, Wickr and Threema: next generation secured messengers
-
Technologies4 года ago
Google to require vaccinations as Silicon Valley rethinks return-to-office policies
-
Technologies3 года ago
Olivia Harlan Dekker for Verum Messenger
-
Technologies3 года ago
Black Friday 2021: The best deals on TVs, headphones, kitchenware, and more
-
Technologies4 года ago
iPhone 13 event: How to watch Apple’s big announcement tomorrow