Connect with us

Technologies

Connect Your iPhone or Android to Any TV: A Guide for AirPlay, Chromecast and HDMI

When visiting friends and family, you can likely share videos from your phone to your TV without needing to log in to any built-in apps.

When visiting your friends and family this holiday season, you may want to show off your latest photos or stream movies to their television while spending time together. However, it can be a pain to log in to your streaming service account on someone’s television. 

Thankfully, with most recent televisions, you probably don’t need to log in at all to do this. In most cases, the phone you carry right now can connect directly to a TV, and you can share or cast your screen using your own accounts saved on your phone. 

Many TVs now ship with built-in support for AirPlay, Chromecast or Miracast, all of which let you wirelessly connect your phone. The trickiest part isn’t whether you can connect your phone to your TV (because you probably can). Rather, you’ll need to know which wireless casting connection your phone supports and make sure the TV you want to connect to also supports it.

We’ll talk about how this works, based on whether you’re using an iPhone or an Android phone. We’ll also point out when you’ll be using AirPlay, Chromecast or Miracast to make the connection, depending on what device you have.

iPhone supports AirPlay and Chromecast

Apple’s iPhone devices have two ways of connecting wirelessly to a television. On a system level, an iPhone can use AirPlay to cast media from video and music apps to any device that also supports AirPlay. This originally was exclusive to the Apple TV, but AirPlay now supports many televisions made by Samsung, LG, TCL and Vizio, along with Roku’s streaming devices. Odds are if your device supports the Apple TV app, somewhere in its settings is also support for AirPlay. 

You can access AirPlay in one of two ways. If you’re using a supported app like Paramount Plus, you’ll want to tap the AirPlay icon represented by a TV with a triangle. You can also access AirPlay from your phone’s Control Center by tapping the icon represented by two rectangles and then picking the device you’re casting to. Using the latter option, you can also mirror your phone’s screen to your TV to display apps like Instagram or TikTok that don’t include AirPlay from within.

If you are trying to connect with a television with the Google TV operating system or the Google TV Streamer, the iPhone also supports Chromecast. Similar to using AirPlay from a media app, you’ll tap the Chromecast icon represented by a rectangle with three wavy lines. You’ll then tap the device you want to cast to. The biggest difference between how AirPlay and Chromecast work on the iPhone is that you won’t be able to mirror your iPhone’s display over Chromecast.

Certain apps like YouTube will blend these casting options together for convenience. When tapping Google’s Chromecast button, a submenu will let you choose between using AirPlay or Chromecast or linking directly to your TV’s YouTube app using a code.

And if you want to connect your iPhone to your television using an HDMI cable, you can use either a USB-C to HDMI adapter if you have an iPhone 15 or newer or a Lightning-to-HDMI adapter for the iPhone 14 and earlier. That adapter will allow for screen mirroring without using AirPlay.

Android always supports Chromecast, sometimes supports Miracast

Android phones don’t support AirPlay, but they sometimes support two wireless casting options that connect to nearly any television.

First, all Android phones include Chromecast support. So if your TV has Chromecast built-in or has a Google TV streamer attached, you’ll be able to connect your phone by tapping the Cast icon from an app. You can also set up a screen cast shortcut in the quick settings drop-down panel, which will provide an even faster way to quickly cast to your TV. CNET’s Nelson Aguilar has put together a guide for this.

And while it’s not supported on every Android phone, Samsung and Motorola both make Android phones that support Miracast for screen mirroring. These features are labeled as Smart View and Ready For, respectively, and will let you connect your phone to televisions or displays that support a setting that’s often labeled Screen Mirroring. More recent Motorola phones, like the Razr Ultra, are calling this feature Smart Connect. What’s unique about Miracast is that many Windows PCs also support this style of casting, and during my recent trip, that came in handy in order to play some Jackbox Games.

An additional note about these features from Samsung and Motorola is that both support connecting your phone to a television or computer monitor using a USB-C to HDMI cable, should you have one on hand. This could be particularly helpful if you’re trying to do a more data-intensive activity on your phone, such as connecting to a bigger screen in order to use your phone more like a computer.

More tips about wirelessly connecting your phone to a TV

Even though many televisions and streaming devices support one or more of these methods, it’s still entirely possible that when traveling, you won’t have a perfect match. For instance, you might have an Android phone, but the TV in your hotel room supports only AirPlay or blocks access to the HDMI port. But for home use, now that many televisions support multiple connection options, you have a good chance to be able to set up a method that works for day-to-day viewing.

You’ll also want to keep in mind that much like with video streaming, your network could also affect how effective a wireless connection will be to your TV. With that in mind, you will want to have your phone as close to a router as possible, which will help with the connection. If your video quality degrades while streaming, you may also want to turn casting off and on again to reset the connection.

But as long as your phone and television can connect with one of the above methods, you should otherwise be free to stream any movie or music from your phone onto your TV.

Technologies

AI Slop Is Destroying the Internet. These Are the People Fighting to Save It

Continue Reading

Technologies

The Sun’s Temper Tantrums: What You Should Know About Solar Storms

Solar storms are associated with the lovely aurora borealis, but they can have negative impacts, too.

Last month, Earth was treated to a massive aurora borealis that reached as far south as Texas. The event was attributed to a solar storm that lasted nearly a full day and will likely contend for the strongest of 2026. Such solar storms are usually fun for people on Earth, as we are protected from solar radiation by our planet’s atmosphere, so we can just enjoy the gorgeous greens and pretty purples in the night sky.

But solar storms are a lot more than just the aurora borealis we see, and sometimes they can cause real damage. There are several examples of this in recorded history, with the earliest being the Carrington Event, a solar storm that took place on Sept. 1, 1859. It remains the strongest solar storm ever recorded, where the world’s telegraph machines became overloaded with energy from it, causing them to shock their operators, send ghost messages and even catch on fire. 

Things have changed a lot since the mid-1800s, and while today’s technology is a lot more resistant to solar radiation than it once was, a solar storm of that magnitude could still cause a lot of damage. 

What is a solar storm?

A solar storm is a catchall term that describes any disturbance in the sun that involves the violent ejection of solar material into space. This can come in the form of coronal mass ejections, where clouds of plasma are ejected from the sun, or solar flares, which are concentrated bursts of electromagnetic radiation (aka light). 

A sizable percentage of solar storms don’t hit Earth, and the sun is always belching material into space, so minor solar storms are quite common. The only ones humans tend to talk about are the bigger ones that do hit the Earth. When this happens, it causes geomagnetic storms, where solar material interacts with the Earth’s magnetic fields, and the excitations can cause issues in everything from the power grid to satellite functionality. It’s not unusual to hear «solar storm» and «geomagnetic storm» used interchangeably, since solar storms cause geomagnetic storms. 

Solar storms ebb and flow on an 11-year cycle known as the solar cycle. NASA scientists announced that the sun was at the peak of its most recent 11-year cycle in 2024, and, as such, solar storms have been more frequent. The sun will metaphorically chill out over time, and fewer solar storms will happen until the cycle repeats. 

This cycle has been stable for hundreds of millions of years and was first observed in the 18th century by astronomer Christian Horrebow.

How strong can a solar storm get?

The Carrington Event is a standout example of just how strong a solar storm can be, and such events are exceedingly rare. A rating system didn’t exist back then, but it would have certainly maxed out on every chart that science has today. 

We currently gauge solar storm strength on four different scales. 

The first rating that a solar storm gets is for the material belched out of the sun. Solar flares are graded using the Solar Flare Classification System, a logarithmic intensity scale that starts with B-class at the lowest end, and then increases to C, M and finally X-class at the strongest. According to NASA, the scale goes up indefinitely and tends to get finicky at higher levels. The strongest solar flare measured was in 2003, and it overloaded the sensors at X17 and was eventually estimated to be an X45-class flare. 

CMEs don’t have a named measuring system, but are monitored by satellites and measured based on the impact they have on the Earth’s geomagnetic field. 

Once the material hits Earth, NOAA uses three other scales to determine how strong the storm was and which systems it may impact. They include: 

  • Geomagnetic storm (G1-G5): This scale measures how much of an impact the solar material is having on Earth’s geomagnetic field. Stronger storms can impact the power grid, electronics and voltage systems. 
  • Solar radiation storm (S1-S5): This measures the amount of solar radiation present, with stronger storms increasing exposure to astronauts in space and to people in high-flying aircraft. It also describes the storm’s impact on satellite functionality and radio communications. 
  • Radio blackouts (R1-R5): Less commonly used but still very important. A higher R-rating means a greater impact on GPS satellites and high-frequency radios, with the worst case being communication and navigation blackouts. 

Solar storms also cause auroras by exciting the molecules in Earth’s atmosphere, which then light up as they «calm down,» per NASA. The strength and reach of the aurora generally correlate with the strength of the storm. G1 storms rarely cause an aurora to reach further south than Canada, while a G5 storm may be visible as far south as Texas and Florida. The next time you see a forecast calling for a big aurora, you can assume a big solar storm is on the way. 

How dangerous is a solar storm?

The overwhelming majority of solar storms are harmless. Science has protections against the effects of solar storms that it did not have back when telegraphs were catching on fire, and most solar storms are small and don’t pose any threat to people on the surface since the Earth’s magnetic field protects us from the worst of it.

That isn’t to say that they pose no threats. Humans may be exposed to ionizing radiation (the bad kind of radiation) if flying at high altitudes, which includes astronauts in space. NOAA says that this can happen with an S2 or higher storm, although location is really important here. Flights that go over the polar caps during solar storms are far more susceptible than your standard trip from Chicago to Houston, and airliners have a whole host of rules to monitor space weather, reroute flights and monitor long-term radiation exposure for flight crews to minimize potential cancer risks.

Larger solar storms can knock quite a few systems out of whack. NASA says that powerful storms can impact satellites, cause radio blackouts, shut down communications, disrupt GPS and cause damaging power fluctuations in the power grid. That means everything from high-frequency radio to cellphone reception could be affected, depending on the severity.

A good example of this is the Halloween solar storms of 2003. A series of powerful solar flares hit Earth on Oct. 28-31, causing a solar storm so massive that loads of things went wrong. Most notably, airplane pilots had to change course and lower their altitudes due to the radiation wreaking havoc on their instruments, and roughly half of the world’s satellites were entirely lost for a few days.

A paper titled Flying Through Uncertainty was published about the Halloween storms and the troubles they caused. Researchers note that 59% of all satellites orbiting Earth at the time suffered some sort of malfunction, like random thrusters going offline and some shutting down entirely. Over half of the Earth’s satellites were lost for days, requiring around-the-clock work from NASA and other space agencies to get everything back online and located.

Earth hasn’t experienced a solar storm on the level of the Carrington Event since it occurred in 1859, so the maximum damage it could cause in modern times is unknown. The European Space Agency has run simulations, and spoiler alert, the results weren’t promising. A solar storm of that caliber has a high chance of causing damage to almost every satellite in orbit, which would cause a lot of problems here on Earth as well. There were also significant risks of electrical blackouts and damage. It would make one heck of an aurora, but you might have to wait to post it on social media until things came back online.

Do we have anything to worry about?

We’ve mentioned two massive solar storms with the Halloween storms and the Carrington Event. Such large storms tend to occur very infrequently. In fact, those two storms took place nearly 150 years apart. Those aren’t the strongest storms yet, though. The very worst that Earth has ever seen were what are known as Miyake events.

Miyake events are times throughout history when massive solar storms were thought to have occurred. These are measured by massive spikes in carbon-14 that were preserved in tree rings. Miyake events are few and far between, but science believes at least 15 such events have occurred over the past 15,000 years. That includes one in 12350 BCE, which may have been twice as large as any other known Miyake event. 

They currently hold the title of the largest solar storms that we know of, and are thought to be caused by superflares and extreme solar events. If one of these happened today, especially one as large as the one in 12350 BCE, it would likely cause widespread, catastrophic damage and potentially threaten human life

Those only appear to happen about once every several hundred to a couple thousand years, so it’s exceedingly unlikely that one is coming anytime soon. But solar storms on the level of the Halloween storms and the Carrington Event have happened in modern history, and humans have managed to survive them, so for the time being, there isn’t too much to worry about. 

Continue Reading

Technologies

TMR vs. Hall Effect Controllers: Battle of the Magnetic Sensing Tech

The magic of magnets tucked into your joysticks can put an end to drift. But which technology is superior?

Competitive gamers look for every advantage they can get, and that drive has spawned some of the zaniest gaming peripherals under the sun. There are plenty of hardware components that actually offer meaningful edges when implemented properly. Hall effect and TMR (tunnel magnetoresistance or tunneling magnetoresistance) sensors are two such technologies. Hall effect sensors have found their way into a wide variety of devices, including keyboards and gaming controllers, including some of our favorites like the GameSir Super Nova. 

More recently, TMR sensors have started to appear in these devices as well. Is it a better technology for gaming? With multiple options vying for your lunch money, it’s worth understanding the differences to decide which is more worthy of living inside your next game controller or keyboard. 

How Hall effect joysticks work

We’ve previously broken down the difference between Hall effect tech and traditional potentiometers in controller joysticks, but here’s a quick rundown on how Hall effect sensors work. A Hall effect joystick moves a magnet over a sensor circuit, and the magnetic field affects the circuit’s voltage. The sensor in the circuit measures these voltage shifts and maps them to controller inputs. Element14 has a lovely visual explanation of this effect here.

The advantage this tech has over potentiometer-based joysticks used in controllers for decades is that the magnet and sensor don’t need to make physical contact. There’s no rubbing action to slowly wear away and degrade the sensor. So, in theory, Hall effect joysticks should remain accurate for the long haul. 

How TMR joysticks work

While TMR works differently, it’s a similar concept to Hall effect devices. When you move a TMR joystick, it moves a magnet in the vicinity of the sensor. So far, it’s the same, right? Except with TMR, this shifting magnetic field changes the resistance in the sensor instead of the voltage

There’s a useful demonstration of a sensor in action here. Just like Hall effect joysticks, TMR joysticks don’t rely on physical contact to register inputs and therefore won’t suffer the wear and drift that affects potentiometer-based joysticks. 

Which is better, Hall effect or TMR?

There’s no hard and fast answer to which technology is better. After all, the actual implementation of the technology and the hardware it’s built into can be just as important, if not more so. Both technologies can provide accurate sensing, and neither requires physical contact with the sensing chip, so both can be used for precise controls that won’t encounter stick drift. That said, there are some potential advantages to TMR. 

According to Coto Technology, who, in fairness, make TMR sensors, they can be more sensitive, allowing for either greater precision or the use of smaller magnets. Since the Hall effect is subtler, it relies on amplification and ultimately requires extra power. While power requirements vary from sensor to sensor, GameSir claims its TMR joysticks use about one-tenth the power of mainstream Hall effect joysticks. Cherry is another brand highlighting the lower power consumption of TMR sensors, albeit in the brand’s keyboard switches.

The greater precision is an opportunity for TMR joysticks to come out ahead, but that will depend more on the controller itself than the technology. Strange response curves, a big dead zone (which shouldn’t be needed), or low polling rates could prevent a perfectly good TMR sensor from beating a comparable Hall effect sensor in a better optimized controller. 

The power savings will likely be the advantage most of us really feel. While it won’t matter for wired controllers, power savings can go a long way for wireless ones. Take the Razer Wolverine V3 Pro, for instance, a Hall effect controller offering 20 hours of battery life from a 4.5-watt-hour battery with support for a 1,000Hz polling rate on a wireless connection. Razer also offers the Wolverine V3 Pro 8K PC, a near-identical controller with the same battery offering TMR sensors. They claim the TMR version can go for 36 hours on a charge, though that’s presumably before cranking it up to an 8,000Hz polling rate — something Razer possibly left off the Hall effect model because of power usage. 

The disadvantage of the TMR sensor would be its cost, but it appears that it’s negligible when factored into the entire price of a controller. Both versions of the aforementioned Razer controller are $199. Both 8BitDo and GameSir have managed to stick them into reasonably priced controllers like the 8BitDo Ultimate 2, GameSir G7 Pro and GameSir Cyclone 2.

So which wins?

It seems TMR joysticks have all the advantages of Hall effect joysticks and then some, bringing better power efficiency that can help in wireless applications. The one big downside might be price, but from what we’ve seen right now, that doesn’t seem to be much of an issue. You can even find both technologies in controllers that cost less than some potentiometer models, like the Xbox Elite Series 2 controller. 

Caveats to consider

For all the hype, neither Hall effect nor TMR joysticks are perfect. One of their key selling points is that they won’t experience stick drift, but there are still elements of the joystick that can wear down. The ring around the joystick can lose its smoothness. The stick material can wear down (ever tried to use a controller with the rubber worn off its joystick? It’s not pleasant). The linkages that hold the joystick upright and the springs that keep it stiff can loosen, degrade and fill with dust. All of these can impact the continued use of the joystick, even if the Hall effect or TMR sensor itself is in perfect operating order. 

So you might not get stick drift from a bad sensor, but you could get stick drift from a stick that simply doesn’t return to its original resting position. That’s when having a controller that’s serviceable or has swappable parts, like the PDP Victrix Pro BFG, could matter just as much as having one with Hall effect or TMR joysticks.  

Continue Reading

Trending