Connect with us

Technologies

What Is Dark Matter? The Answer to Universe’s Greatest Mystery Could Be Axions

The saga of how an odd hypothetical particle became a star dark matter candidate.

Physics is permeated by conundrums, and in a sense, that’s what keeps the field going. These mind-bending puzzles foster a race toward truth. But of all the dilemmas, I’d say two of them unquestionably fall under priority A.

First off, when scientists look up at the sky, they consistently see stars and galaxies traveling farther from our planet, and from each other, in every direction. The universe kind of looks like a bubble blowing up, which is how we’ve come to know it’s expanding. But something doesn’t make sense.

Space doesn’t seem to have enough stuff floating around in it — stars, particles, planets and all else — for it to inflate so swiftly. In other words, the universe is expanding way faster than our physics says it can, and it’s even picking up speed as you read this. Which brings us to problem two.

Per experts’ best calculations, galaxies are spinning so incredibly quickly as everything zips around that we’d expect the spirals to behave like out-of-control merry-go-rounds flinging metal horses off the ride. There doesn’t seem to be enough stuff in the universe to anchor them together. Yet the Milky Way isn’t drifting apart.

So… what’s going on?

As blanket terms, physicists call «missing» stuff pushing the cosmos outward dark energy, and pieces holding galaxies together — presumably in a halo-like form — dark matter. Neither interacts with light or matter we can see, so they’re essentially invisible. Combined, dark matter and dark energy make up a whopping 95% of the universe.

Zeroing in on dark matter’s portion, the authors of a recent review, published in the journal Science Advances, write that «it may well consist of one or more types of fundamental particle … although part or all of it might consist of macroscopic lumps of some invisible form of matter, such as black holes.»

Black holes or not, dark matter is totally elusive. In an effort to decode its secrets, scientists have picked a handful of suspects out of the cosmic lineup, and one of the most wanted particles is an odd little speck called the axion.

The wide-eyed hypothesis of axions

You might’ve heard of the Standard Model, which is pretty much the holy grail, ever-strengthening handbook of particle physics. It outlines how every single particle in the universe works.

However, as the Science Advances review points out, some «particle physicists are restless and dissatisfied with the Standard Model because it has many theoretical shortcomings and leaves many pressing experimental questions unanswered.» More specifically for us, it leads right into a paradox regarding a well-established scientific concept dubbed CPT invariance. Aha, the physics puzzles continue.

Basically, CPT invariance states that the universe must be symmetrical when it comes to C (charge), P (parity) and T (time). For that reason, it’s also called CPT symmetry. If everything had the opposite charge, was left-handed instead of right-handed and traveled through time backward instead of forward, it states the universe should remain just the same.

For a long while, CPT symmetry seemed unbreakable. Then 1956 came around.

Long story short, scientists found something that violates the P part of CPT symmetry. It’s called the weak force, and it dictates things like neutrino collisions and element fusion in the sun. Everyone was shocked, confused and scared.

Nearly every foundational concept of physics relies on CPT symmetry.

About a decade later, researchers discovered the weak force violating C symmetry, too. Things were falling apart. Physicists could just hope and pray that even if P is violated… and CP is violated… maybe CPT still isn’t. Maybe weak forces just need the trio to uphold CPT symmetry. Thankfully, this theory seems correct. For some unknown reason, the weak force follows total CPT symmetry despite C and CP blips. Phew.

But here’s the issue. If weak forces violate CP symmetry, you’d expect strong forces to as well, right? Well, they don’t, and physicists don’t know why. This is called the strong CP problem — and precisely where things get interesting.

Neutrons — uncharged particles within atoms — abide by the strong force. Plus, allowing for simplification, their neutral charge means they violate T symmetry. And «if we find something that violates T symmetry, then it must also violate CP symmetry in such a way that the combination CPT is not violated,» the paper states. But… that’s weird. Neutrons don’t because of the strong CP problem.

And so the idea of the axion was born.

Years ago, physicists Roberto Peccei and Helen Quinn suggested adding a new dimension to the Standard Model. It involved a field of ultralight particles — axions — that explained the strong CP problem, thereby relaxing the conditions for neutrons. Axions appeared to fix everything so well that the duo’s idea became the «most popular solution to the strong CP problem,» the paper states. It was a miracle.

To be clear, axions are still hypothetical, but think about what just happened. Physicists added a new particle to the Standard Model, which outlines specks of the entire universe. What might that mean for everything else?

The key to dark matter?

Per the Peccei-Quinn theory, axions would be «cold,» or very slowly moving through space. And… the study researchers say «the existence of [dark matter] is inferred from its gravitational effects, and astrophysical observations suggest that it is ‘cold.'»

The paper also states, «there are experimental upper limits on how strongly [the axion] interacts with the visible matter.»

So, basically, axions that help explain the strong CP problem also seem to have theoretical properties that align with those of dark matter. Extremely well.

The European Council for Nuclear Research, better known as CERN, which runs the Large Hadron Collider and is leading the charge for antimatter studies, also underlines «one of the most suggestive properties of axions is that, in a natural way, they could be produced in huge numbers soon after the Big Bang. This population of axions would still be present today and could compose the dark matter of the universe.»

There you go. Axions are among the hottest topic in physics because they seem to explain so much. But once again, those sought-after bits are still hypothetical.

Will we ever find axions?

It’s been 40 years since scientists began hunting for axions.

Most of these searches are «mainly exploiting the action field interaction with the electromagnetic fields,» say the authors in that recent review published in Science Advances.

For instance, CERN developed the Axion Search Telescope, a machine built to find a hint of the particles produced in the sun’s core. Inside our star, there are strong electric fields that could potentially interact with axions — if they’re really there, that is.

But the quest has so far faced a few pretty big challenges. For one, «the particle mass is not theoretically predictable,» the authors write — that is, we have very little idea of what an axion might look like.

Right now, scientists are still searching for them while assuming a vastly wide range of masses. Recently, however, researchers offered evidence that the particle is likely between 40 and 180 microelectron volts. That’s unthinkably small, at about 1 billionth the mass of an electron.

«In addition,» the team writes, «the axion signal is expected to be very narrow … and extremely feeble due to very weak couplings to Standard Model particles and fields.» In essence, even if minuscule axions try their very best to signal their existence to us, we might miss them. Their cues could be so weak we’d barely notice.

Despite these hurdles, the axion search marches on. Most scientists argue that they must be out there somewhere but they seem too good to be true when it comes to fully explaining dark matter.

«Most experimental attempts assume that axions compose 100% of the dark matter halo,» the study authors emphasize, suggesting that perhaps there’s a way to «look into axion physics without relying on such an assumption.»

Though they may be the star of the show, what if axions are just one chapter of dark matter history?

Technologies

Today’s NYT Strands Hints, Answers and Help for Oct. 23 #599

Here are hints and answers for the NYT Strands puzzle for Oct. 23, No. 599.

Looking for the most recent Strands answer? Click here for our daily Strands hints, as well as our daily answers and hints for The New York Times Mini Crossword, Wordle, Connections and Connections: Sports Edition puzzles.


Today’s NYT Strands puzzle might be Halloween-themed, as the answers are all rather dangerous. Some of them are a bit tough to unscramble, so if you need hints and answers, read on.

I go into depth about the rules for Strands in this story. 

If you’re looking for today’s Wordle, Connections and Mini Crossword answers, you can visit CNET’s NYT puzzle hints page.

Read more: NYT Connections Turns 1: These Are the 5 Toughest Puzzles So Far

Hint for today’s Strands puzzle

Today’s Strands theme is: Please don’t eat me!

If that doesn’t help you, here’s a clue: Remember Mr. Yuk?

Clue words to unlock in-game hints

Your goal is to find hidden words that fit the puzzle’s theme. If you’re stuck, find any words you can. Every time you find three words of four letters or more, Strands will reveal one of the theme words. These are the words I used to get those hints but any words of four or more letters that you find will work:

  • POND, NOON, NODE, BALE, SOCK, LOVE, LOCK, MOCK, LEER, REEL, GLOVE, DAIS, LEAN, LEAD, REEL

Answers for today’s Strands puzzle

These are the answers that tie into the theme. The goal of the puzzle is to find them all, including the spangram, a theme word that reaches from one side of the puzzle to the other. When you have all of them (I originally thought there were always eight but learned that the number can vary), every letter on the board will be used. Here are the nonspangram answers:

  • AZALEA, HEMLOCK, FOXGLOVE, OLEANDER, BELLADONNA

Today’s Strands spangram

Today’s Strands spangram is POISONOUS. To find it, look for the P that is the first letter on the far left of the top row, and wind down and across.

Continue Reading

Technologies

Today’s NYT Connections: Sports Edition Hints and Answers for Oct. 23, #395

Here are hints and the answers for the NYT Connections: Sports Edition puzzle for Oct. 23, No. 395.

Looking for the most recent regular Connections answers? Click here for today’s Connections hints, as well as our daily answers and hints for The New York Times Mini Crossword, Wordle and Strands puzzles.


Today’s Connections: Sports Edition has one of those crazy purple categories, where you wonder if anyone saw the connection, or if people just put that grouping together because only those four words were left. If you’re struggling but still want to solve it, read on for hints and the answers.

Connections: Sports Edition is published by The Athletic, the subscription-based sports journalism site owned by The Times. It doesn’t show up in the NYT Games app but appears in The Athletic’s own app. Or you can play it for free online.

Read more: NYT Connections: Sports Edition Puzzle Comes Out of Beta

Hints for today’s Connections: Sports Edition groups

Here are four hints for the groupings in today’s Connections: Sports Edition puzzle, ranked from the easiest yellow group to the tough (and sometimes bizarre) purple group.

Yellow group hint: Fan noise.

Green group hint: Strategies for hoops.

Blue group hint: Minor league.

Purple group hint: Look for a connection to hoops.

Answers for today’s Connections: Sports Edition groups

Yellow group: Sounds from the crowd.

Green group: Basketball offenses.

Blue group: Triple-A baseball teams.

Purple group: Ends with a basketball stat.

Read more: Wordle Cheat Sheet: Here Are the Most Popular Letters Used in English Words

What are today’s Connections: Sports Edition answers?

The yellow words in today’s Connections

The theme is sounds from the crowd. The four answers are boo, cheer, clap and whistle.

The green words in today’s Connections

The theme is basketball offenses. The four answers are motion, pick and roll, Princeton and triangle.

The blue words in today’s Connections

The theme is triple-A baseball teams.  The four answers are Aces, Jumbo Shrimp, Sounds and Storm Chasers.

The purple words in today’s Connections

The theme is ends with a basketball stat.  The four answers are afoul, bassist, counterpoint and sunblock.

Continue Reading

Technologies

Amazon’s Delivery Drivers Will Soon Wear AI Smart Glasses to Work

The goal is to streamline the delivery process while keeping drivers safe.

Amazon announced on Wednesday that it is developing new AI-powered smart glasses to simplify the delivery experience for its drivers. CNET smart glasses expert Scott Stein mentioned this wearable rollout last month, and now the plan is in its final testing stages.

The goal is to simplify package delivery by reducing the need for drivers to look at their phones, the label on the package they’re delivering and their surroundings to find the correct address. 


Don’t miss any of our unbiased tech content and lab-based reviews. Add CNET as a preferred Google source.


A heads-up display will activate as soon as the driver parks, pointing out potential hazards and tasks that must be completed. From there, drivers can locate and scan packages, follow turn-by-turn directions and snap a photograph to prove delivery completion without needing to take out their phone.

The company is testing the glasses in select North American markets.

Watch: See our Instagram post with a video showing the glasses

A representative for Amazon didn’t immediately respond to a request for comment.

To fight battery drain, the glasses pair with a controller attached to the employee’s delivery vest, allowing them to replace depleted batteries and access operational controls. The glasses will support an employee’s eyeglass prescription. An emergency button will be within reach to ensure the driver’s safety. 

Amazon is already planning future versions of the glasses, which will feature «real-time defect detection,» notifying the driver if a package was delivered to the incorrect address. They plan to add features to the glasses to detect if pets are in the yard and adjust to low light.

Continue Reading

Trending

Exit mobile version